Preview

Agricultural Science Euro-North-East

Advanced search

Influence of various parameters on the vegetable raw material pelleting process and pellets quality (review)

https://doi.org/10.30766/2072-9081.2023.24.1.30-45

Abstract

Determining the regularities of the process of pelleting vegetable raw materials is relevant for the improvement of technologies and technical equipment in order to reduce energy intensity and improve the quality of pellets. The generalization of the results of the research aimed at studying the influence of various parameters on the process of pelleting vegetable raw materials and the quality of feed and biofuel pellets is the purpose of the research. A selection and systematic review of the scientific literature on the subject of the study for the period of 2007-2022 has been carried out. The analysis has proved that heat pre-treatment and moistening of vegetable raw materials, as well as their composition and particle size are the factors that have the greatest impact on the quality of feed and biofuel pellets. Increasing the pressure in the range of 20...200 MPa results in increasing the pellets durability. A die temperature of around 100°C is optimum for obtaining dense pellets of highquality from vegetable raw materials. The design parameters of the pelletizer play an important role in obtaining high-quality pellets when processing vegetable raw materials. The design of the inlet in the form of a tapering cone helps to reduce energy consumption and pelleting pressure. An increase in the ratio of the die channel length to its diameter exponentially increases the pelleting pressure and its energy intensity. The interplay between the physical processes occurring in the pelletizer makes it difficult to interpret the impact of each parameter on the pelleting process, so different authors have different assessments of the contribution of individual factors in producing high-quality pellets. Therefore, the interaction between the individual pelleting parameters and their influence on the results of the process should be examined more precisely. 

About the Authors

S. V. Braginets
Agricultural Research Centre Donskoy; Don State Technical University
Russian Federation

Sergey V. Braginets, DSc in Engineering, leading researcher, the Department of Plant Products Processing

14 Lenin St., Zernograd, Rostov Region, 347740

1 Gagarin Sq., Rostov-on-Don, 344010



O. N. Bakhchevnikov
Agricultural Research Centre Donskoy
Russian Federation

Oleg N. Bakhchevnikov, PhD in Engineering, senior researcher, the Department of Plant Products Processing

14 Lenin St., Zernograd, Rostov Region, 347740



K. A. Deev
Agricultural Research Centre Donskoy
Russian Federation

Konstantin A. Deev, engineer, the Department of Plant Products Processing

14 Lenin St., Zernograd, Rostov Region, 347740



References

1. Blagov D. A., Gizatov A. Y., Smakuyev D. R., Kosilov V. I., Pogodaev V. A., Tamaev S. A. Overview of feed granulation technology and technical means for its implementation. IOP Conference Series: Earth and Environmental Science. 2020;613(1):012018. DOI: https://doi.org/10.1088/1755-1315/613/1/012018

2. Regupathi E. R., Suriya A., Geethapriya R. S. On studying different types of pelletizing system for fish feed. International Journal of Fishiries and Aquatic Studies. 2019;7(2):187-192. URL: https://www.fisheriesjournal.com/archives/2019/vol7issue2/PartC/7-2-4-857.pdf

3. Kumaraguru Vasagam K. P., Ambasankar K., Dayal J. S. An overview of aquafeed formulation and processing. In: Perumal S., Thirunavukkarasu A. R., Pachiappan P. (eds) Advances in Marine and Brackishwater Aquaculture. Springer, New Delhi, 2015. pp. 227-240. DOI: https://doi.org/10.1007/978-81-322-2271-2_21

4. Muramatsu K., Massuquetto A., Dahlke F., Maiorka A. Factors that affect pellet quality: a review. Journal of Agricultural Science and Technology. 2015;9(2):717-722. DOI: https://doi.org/10.17265/2161-6256/2015.09.002

5. Nielsen S. K., Mando M., Rosenorn A. B. Review of die design and process parameters in the biomass pelleting process. Powder Technology. 2020;364: 971-985. DOI: https://doi.org/10.1016/j.powtec.2019.10.051

6. Gageanu I., Cujbescu D., Persu C., Tudor P., Cardei P., Matache M., Vladut V., Biris S., Voicea I., Ungureanu N. Influence of input and control parameters on the process of pelleting powdered biomass. Energies. 2021;14(14):4104. DOI: https://doi.org/10.3390/en14144104

7. Olkhovik P. A., Shakhov V. A., Khlopko Yu. A., Kozlovtsev A. P., Mezhueva L. V., Shakhov V. V., Shakhov G. V. The main trends in the improvement of press granulators. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta = Izvestia Orenburg State Agrarian University. 2022;94(2):102-106. (In Russ.). DOI: https://doi.org/10.37670/2073-0853-2022-94-2-102-106

8. Thomas M., Van der Poel A. F. B. Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Animal Feed Science and Technology. 2020;268:114612. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114612

9. Dujmovic M., Safran B., Jug M., Radmanovic K., Antonovic A. Biomass Pelletizing Process: A Review. Drvna Industrija. 2022;73(1):99-106. DOI: https://doi.org/10.5552/drvind.2022.2139

10. Torraco R. J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review. 2016;15(4):404-428. DOI: https://doi.org/10.1177/1534484316671606

11. Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems. 2015;37:879-910. DOI: https://doi.org/10.17705/1cais.03743

12. Stelte W., Sanadi A. R., Shang L., Holm J. K., Ahrenfeldt J., Henriksen U. B. Recent developments in biomass pelletization – A review. BioResources. 2012;7(3):4451-4490. URL: https://orbit.dtu.dk/files/10266572/Recent_Development_Biomass_Pelletization_Review.pdf

13. Harun N. Y., Afzal M. Effect on particle size on mechanical properties of pellets made from biomass. Procedia Engineering. 2016;148:93-99. DOI: https://doi.org/10.1016/j.proeng.2016.06.445

14. Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel. 2011;90(11):3285-3290. DOI: https://doi.org/10.1016/j.fuel.2011.05.011

15. Lyu F., Thomas M., Hendriks W. H., Van der Poel A. F. B. Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology. 2020;261:114347. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114347

16. Рюле М. Как изменяется размер частиц при гранулировании. Комбикорма. 2020;(6):34-36. Режим доступа: https://kombi-korma.ru/sites/default/files/2/06_20/2020_06_34-36.pdf EDN: CCZYPO Ryule M. How particle size changes during pelleting. Kombikorma. 2020;(6):34-36. (In Russ.). URL: https://kombi-korma.ru/sites/default/files/2/06_20/2020_06_34-36.pdf

17. Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V. Particle size distribution and physicochemical properties of pellets made of straw, hay, and their blends. Waste and Biomass Valorization. 2020;11:63-75. DOI: https://doi.org/10.1007/s12649-018-0458-8

18. Bergström D., Israelsson S., Ohman M., Dahlqvist S. A., Gref R., Boman C., Wasterlund I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology. 2008;89(12):1324-1329. DOI: https://doi.org/10.1016/j.fuproc.2008.06.001

19. Mani S., Tabil L. G., Sokhansanj S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy. 2006;30(7):648-654. DOI: https://doi.org/10.1016/j.biombioe.2005.01.004

20. Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy. 2011;35(2):910-918. DOI: https://doi.org/10.1016/j.biombioe.2010.11.003

21. Froetschner J. Conditioning Controls Quality of Pellet. Feed Tech. 2006;10(6):12-5. URL: https://vk.cc/chaXTz

22. Moritz J. S., Cramer K. R., Wilson K. J., Beyer R. S. Feed manufacture and feeding of rations with graded levels of added moisture formulated to different energy densities. Journal Applied of Poultry Research. 2003;12(3):371-381. DOI: https://doi.org/10.1093/japr/12.3.371

23. Abdollahi M. R., Ravindran V., Wester T. J., Ravindran G., Thomas D. V. Effect of improved pellet quality from the addition of a pellet binder and/or moisture to a wheat-based diet conditioned at two different temperatures on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broilers. Animal Feed Science and Technology. 2012;175(3-4);150-157. DOI: https://doi.org/10.1016/j.anifeedsci.2012.05.001

24. Cutlip S. E., Hott J. M., Buchanan N. P., Rack A. L., Latshaw J. D., Moritz J. S. The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. Journal Applied of Poultry Research. 2008;17(2):249-261. DOI: https://doi.org/10.3382/japr.2007-00081

25. Ungureanu N., Vladut V., Voicu G., Dinca M. N., Zabava B. S. Influence of biomass moisture content on pellet properties – review. Engineering for Rural Development. 2018;17:1876-1883. DOI: https://doi.org/10.22616/ERDev2018.17.N449

26. Colovic R., Vukmirovic D., Matulaitis R., Bliznikas S., Uchockis V., Juskiene V., Levic J. Effect of die channel press way length on physical quality of pelleted cattle feed. Food & Feed Research. 2010;37(1):1-6. URL: http://foodandfeed.fins.uns.ac.rs/uploads/Magazines/magazine_37/effect-of-die-channel-press-way-length-on-physicalquality-of-pelleted-cattle-feed.pdf

27. Abadi M. H. M. G., Moravej H., Shivazad M., Torshizi M. A. K., Kim W. K. Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry Science. 2019;98(10):4745-4754. DOI: https://doi.org/10.3382/ps/pez190

28. Gehring C. K., Lilly K. G. S., Shires L. K., Beaman K. R., Loop S. A., Moritz J. S. Increasing mixer-added fat reduces the electrical energy required for pelleting and improves exogenous enzyme efficacy for broilers. Journal of Applied Poultry Research. 2011;20(1):75-89. DOI: https://doi.org/10.3382/japr.2009-00082

29. Lamichhane S., Sahtout K., Smillie J., Scott T. A. Vacuum coating of pelleted feed for broilers: opportunities and challenges. Animal Feed Science and Technology. 2015;200:1-7. DOI: https://doi.org/10.1016/j.anifeedsci.2014.11.015

30. Massuquetto A., Durau J. F., Schramm V. G., Netto M. T., Krabbe E. L., Maiorka A. Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research. 2018;27(1);51-58. DOI: https://doi.org/10.3382/japr/pfx039

31. Segerstrom M., Larsson S. H. Clarifying sub-processes in continuous ring die pelletizing through die temperature control. Fuel Processing Technology. 2014;123:122-126. DOI: https://doi.org/10.1016/j.fuproc.2014.02.008

32. Abdollahi M. R., Ravindran V., Wester T. J., Ravindran G., Thomas D. V. Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed corn and sorghum-based diets. Animal Feed Science and Technology. 2010;162(3-4):106-115. DOI: https://doi.org/10.1016/j.anifeedsci.2010.08.017

33. Kulig R., Laskowski J. Effect of conditioning parameters on pellet temperature and energy consumption in the process of plant material pressing. Teka Komisji Motoryzacji i Energetyki Rolnictwa. 2008;8a:105-111. URL: https://www.researchgate.net/publication/237283167_EFFECT_OF_CONDITIONING_PARAMETERS_ON_PELLET_TEMPERATURE_AND_ENERGY_CONSUMPTION_IN_THE_PROCESS_OF_PLANT_MATERIAL_PRESSING

34. Netto M. T., Massuquetto A., Krabbe E. L., Surek D., Oliveira S. G., Maiorka A. Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. Journal of Applied Poultry Research. 2019;28(4):963-973. DOI: https://doi.org/10.3382/japr/pfz056

35. Dos Santos R. O. F., Bassi L. S., Schramm V. G., da Rocha C., Dahlke F., Krabbe E. L., Maiorka A. Effect of conditioning temperature and retention time on pellet quality, ileal digestibility, and growth performance of broiler chickens. Livestock Science. 2020;240:104110. DOI: https://doi.org/10.1016/j.livsci.2020.104110

36. Picchio R., Latterini F., Venanzi R., Stefanoni W., Suardi A., Tocci D., Pari L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies. 2020;13(11):2937. DOI: https://doi.org/10.3390/en13112937

37. Blagov D. A., Mitrofanov S. V., Panferov N. S., Teterin V. S., Pestryakov E. V. Press granulators, technical features, influence of granulation on qualitative characteristics of feed. Kormlenie sel'skokhozyaystvennykh zhivotnykh i kormoproizvodstvo. 2020;(9):57-66. (In Russ.). DOI: https://doi.org/10.33920/sel-05-2009-06

38. Agar D. A., Rudolfsson M., Kalen G., Campargue M., Perez D. D. S., Larsson S. H. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology. 2018;180:47-55. DOI: https://doi.org/10.1016/j.fuproc.2018.08.006

39. Crawford N. C., Ray A. E., Yancey N. A., Nagle N. Evaluating the pelletization of “pure” and blended lignocellulosic biomass feedstocks. Fuel Processing Technology. 2015;140:46-56. DOI: https://doi.org/10.1016/j.fuproc.2015.08.023

40. Whittaker C., Shield I. Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews. 2017;71:1-11. DOI: https://doi.org/10.1016/j.rser.2016.12.119

41. Faborode M. O., O’Callaghan J. R. Theoretical analysis of the compression of fibrous agricultural materials. Journal of Agricultural Engineering Research. 1986;35(3):175-191. DOI: https://doi.org/10.1016/S0021-8634(86)80055-5

42. Mani S., Tabil L. G., Sokhansanj S. Evaluation of compaction equations applied to four biomass species. Canadian Biosystems Engineering. 2004;46(3):55-61. URL: https://library.csbe-scgab.ca/docs/journal/46/c0404.pdf

43. Alakangas E., Paju P. Wood pellets in Finland – technology, economy, and market. OPET Report 5. Jyväskylä: VTT Processes, 2002. 85 p. URL: https://cris.vtt.fi/ws/files/52184787/wood_pellet_in_finland_compress.pdf

44. Jackson J., Turner A., Mark T., Montross M. Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Processing Technology. 2016;148:43-49. DOI: https://doi.org/10.1016/j.fuproc.2016.02.024

45. Nielsen N. P. K., Gardner D., Poulsen T., Felby C. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science. 2009;41(4):414-425. URL: https://wfs.swst.org/index.php/wfs/article/view/469/469

46. Kuvshinov V. V., Mukhanov N. V., Telegin I. A., Marchenko S. A. Behavior of the "matrix channel -pressed monoliths" system during their heating. Agrarnyy vestnik Verkhnevolzh'ya = Agrarian Journal of Upper Volga Region. 2020;(4):85-90. (In Russ.). DOI: https://doi.org/10.35523/2307-5872-2020-33-4-85-90

47. Serrano C., Monedero E., Lapuerta M., Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology. 2011;92(3):699-706. DOI: https://doi.org/10.1016/j.fuproc.2010.11.031

48. Mostafa M. E., Hu S., Wang Y., Su S., Fu X., Elsayed S. A., Xiang J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews. 2019;105:332-348. DOI: https://doi.org/10.1016/j.rser.2019.01.053

49. Tumuluru J. S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems Engineering. 2014;119:44-57. DOI: https://doi.org/10.1016/j.biosystemseng.2013.11.012

50. Safran B., Radmanovic K., Jug M., Lucic Beljo R., Lojen T., Risovic S. Influence of pressing temperature and additive on mechanical properties of wood pellets. Natural Resources, Green Technology & Sustainable Development. 2018;3:141-148. URL: https://www.sumins.hr/wp-content/uploads/2019/07/green3-proceedings.pdf

51. Koshak Zh., Koshak A. Influence of feed composition on the specific energy intensity of the pelleting process. Kombikorma. 2012;(2):63-64. (In Russ.). URL: https://kombi-korma.ru/sites/default/files/2/2_12/02_2012_063-064.pdf

52. Klimenko A., Gushcheva-Mitropolskaya A. Pellet quality: problems and solutions. Kombikorma. 2016;(7-8):40-42. (In Russ.). URL: https://kombi-korma.ru/sites/default/files/2/7-8_16/07-08_2016_40-42.pdf

53. Ivanov M. Feed pellet quality and productivity. Borregaard LignoTech, 2017. URL: https://vk.cc/chs8F1

54. Nielsen S. K., Mando M. Experimental and numerical investigation of die designs in biomass pelleting and the effect on layer formation in pellets. Biosystems Engineering. 2020;198:185-197. DOI: https://doi.org/10.1016/j.biosystemseng.2020.08.010

55. Mediavilla I., Esteban L. S., Fernandez M. J. Optimisation of pelletisation conditions for poplar energy crop. Fuel Processing Technology. 2012;104:7-15. DOI: https://doi.org/10.1016/j.fuproc.2012.05.031

56. Misljenovic N., Colovic R., Vukmirovic D., Brlek T., Bringas C. S. The effects of sugar beet molasses on wheat straw pelleting and pellet quality. A comparative study of pelleting by using a single pellet press and a pilot-scale pellet press. Fuel Processing Technology. 2016;144:220-229. DOI: https://doi.org/10.1016/j.fuproc.2016.01.001

57. Hu J., Lei T., Shen S., Zhang Q. Specific energy consumption regression and process parameters optimization in wet-briquetting of rice straws at normal temperature. BioResources. 2013;8(1):663-675. URL: https://vk.cc/cjosiF

58. Nielsen S. K., Mandø M., Rosenørn A. B. 1D Model for investigation of energy consumption and wear in die designs used for biomass pelleting. European Biomass Conference and Exhibition Proceedings. 2018;26:550-558. DOI: https://doi.org/10.5071/26thEUBCE2018-2CO.13.1

59. Wu K., Shi S. J., Wang Y. L., Peng B. B. FEA simulation of extruding feed through die hole in pelleting process. Applied Mechanics and Materials. 2011;109:350-354. DOI: https://doi.org/10.4028/www.scientific.net/AMM.109.350

60. Yanukov N., Volkov A., Lukina D., Prokhorova L., Brygin V. Improving the efficiency of the die pelletizer. Kombikorma. 2020;(2):43-45. (In Russ.). DOI: https://doi.org/10.25741/2413-287X-2020-02-2-093

61. Thek G., Obernberger I. The Pellet Handbook: The production and thermal utilization of biomass pellets. London: Routledge, 2010. 592 p. DOI: https://doi.org/10.4324/9781849775328

62. Monedero E., Portero H., Lapuerta M. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology. 2015;132:15-23. DOI: https://doi.org/10.1016/j.fuproc.2014.12.013

63. Stelte W., Clemons C., Holm J. K., Ahrenfeldt J., Henriksen U. B., Sanadi A. R. Fuel pellets from wheat straw: the effect of lignin glass transition and surface waxes on pelletizing properties. Bioenergy Research. 2012;5(2):450-458. DOI: https://doi.org/10.1007/s12155-011-9169-8

64. Adapa P., Tabil L., Schoenau G., Opoku A. Pelleting characteristics of selected biomass with and without steam explosion pretreatment. International Journal of Agricultural and Biological Engineering. 2010;3(3):62-79. DOI: https://doi.org/10.3965/j.issn.1934-6344.2010.03.062-079

65. Theerarattananoon K., Xu F., Wilson J., Ballard R., Mckinney L., Staggenborg S., Vadlani P., Pei Z. J., Wang D. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products. 2011;33(2):325-332. DOI: https://doi.org/10.1016/j.indcrop.2010.11.014

66. Puig-Arnavat M., Ahrenfeldt J., Henriksen U. B. Validation of a multiparameter model to investigate torrefied biomass pelletization behavior. Energy and Fuels. 2017;31(2):1644-1649. DOI: https://doi.org/10.1021/acs.energyfuels.6b02895

67. Holm J. K., Stelte W., Posselt D., Ahrenfeldt J., Henriksen U. B. Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior. Energy and Fuels. 2011;25(8):3706-3711. DOI: https://doi.org/10.1021/ef2005628

68. Kaliyan N., Vance Morey R. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy. 2009;33(3):337-359. DOI: https://doi.org/10.1016/j.biombioe.2008.08.005

69. Shuijuan S., Kai W., Binbin P., Shuanhu W., Yu S. Mechanical model and FEA of ring die of three-roller pellet mill. In: 2010 International Conference on Mechanic Automation and Control Engineering. IEEE, 2010. pp. 76-80. DOI: https://doi.org/10.1109/MACE.2010.5535988

70. Holm J. K., Henriksen U. B., Hustad J. E., Sorensen L. H. Toward an understanding of controlling parameters in softwood and hard-wood pellets production. Energy and Fuels. 2006;20(6):2686-2694. DOI: https://doi.org/10.1021/ef0503360

71. Xia X., Sun Y., Wu K., Jiang Q. Modeling of a straw ring-die briquetting process. BioResources. 2014;9(4):6316-6328. DOI: https://doi.org/10.15376/biores.9.4.6316-6328

72. Polishchuk V. Yu., Panov E. I., Vasilevskaya S. P. Determination of the effect on the energy intensity of granulation of the radii of the working bodies of the press granulator. Traktory i sel'khozmashiny. 2019;(6):86-92. (In Russ.). DOI: https://doi.org/10.31992/0321-4443-2019-6-86-92

73. Wu K., Shi S., Ding W., Peng B., Sun Y. Influence of die speed on the energy consumption in the pelleting process. 2010 International Conference on Computing, Control and Industrial Engineering. IEEE, 2010. pp. 247-250. DOI: https://doi.org/10.1109/CCIE.2010.70


Review

For citations:


Braginets S.V., Bakhchevnikov O.N., Deev K.A. Influence of various parameters on the vegetable raw material pelleting process and pellets quality (review). Agricultural Science Euro-North-East. 2023;24(1):30-45. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.1.30-45

Views: 466


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)