Activity of photosystem II in spring barley leaves under the action of manganese ions
https://doi.org/10.30766/2072-9081.2023.24.1.66-76
Abstract
The influence of manganese ions (30, 60 and 90 mg/l) on the functioning of the photosystem II (PSII) in leaves was assessed on plants of six spring barley cultivars (Belgorodsky 100, st.). The plants were grown on a complete Knop medium without (control) and with the addition of manganese ions (experiment) under natural light conditions. On 14-day-old leaves, parameters of chlorophyll's rapid fluorescence were recorded using a Fluor Pen FP 110/S fluorometer. The sensitivity of the different structural parts of PSII was found to vary depending on the concentration of Mn ions and the genotype used. Thus, absorbed energy flows increased in the cv. Boyarin at 30 and 60 mg/l Mn (by 7.9 and 14.1 %), in cv. Farmer at 60 and 90 mg/l (by 15.8 and 16.1 %), but decreased in cv. Dobryak at 30 and 90 mg/l (by 9.7 and 9.0 %), Farmer at 30 mg/l (by 15.8 %) and Bionic at 60 and 90 mg/l (by 8.0 and 6.8 %). The flow of energy stored in primary photochemical reactions in the cv. Bionic increased at 30 mg/l of manganese (by 6.3 %), but decreased at 60 (by 6.8 %) and 90 mg/l (by 5.3 %); increased in the cv. Boyarin at 30 mg/l of Mn (by 6.4 %), but decreased in the cv. Forward (by 11.7 %). Electronic transport leading to CO2 fixation increased in cv. Farmer at all Mn concentrations (by 8.1...12.6 %), and in cv. Bionic it increased at 30 mg/l (by 7.2 %), but decreased at 90 mg/l (by 7.4 %). The electron flux leading to the oxidation of the finile acceptor of PSI in the studied cultivars did not change under the influence of the stressor. However, the integral parameters of PSII activity (PIABS and PIABS_total indices) under stressful conditions were determined by the plant genotype. This indicates, firstly, the need for targeted selection (to a specific level of the stress factor); secondly, on the possibility of pyramidation of the integral level of resistance to the stressor by selecting parents who differ in the level of change in individual functional reactions of photosynthesis.
Keywords
About the Authors
E. M. LisitsynRussian Federation
Eugeny M. Lisitsyn, DSc in Biology, leading researcher, Head of the Department
Lenin str., 166a, Kirov, 610007
S. A. Churakova
Russian Federation
Svetlana A. Churakova, junior researcher
Lenin str., 166a, Kirov, 610007
References
1. Dorsaf A., Anis B.-A., Chedly A. Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. Journal of Plant Nutrition. 2018;41(4):497-508. DOI: https://doi.org/10.1080/01904167.2017.1385811
2. Kalaji H. M., Rastogi A., Živčák M., Brestic M., Daszkowska-Golec A., Sitko K., Alsharafa K. Y., Lotfi R., Stypiński P., Samborska I. A., Cetner M. D. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. 2018;56(3):953-961. DOI: https://doi.org/10.1007/s11099-018-0766-z
3. Rapacz M., Wójcik-Jagła M., Fiust A., Kalaji H. M., Kościelniak J. Genome-wide associations of chlorophyll fluorescence ojip transient parameters connected with soil drought response in barley. Frontiers in Plant Science. 2019;10:78. DOI: https://doi.org/10.3389/fpls.2019.00078
4. Matile P. H., Hortensteiner S., Thomas H., Krautler B. Chlorophyll breakdown in senescent leaves. Plant Physiology. 1996;112(4):1403-1409. DOI: https://doi.org/10.1104%2Fpp.112.4.1403
5. Paul S., Neese F., Pantazis D. A. Structural models of the biological oxygen-evolving complex: achievements, insights, and challenges for biomimicry. Green Chemistry. 2017;19:2309-2325. DOI: https://doi.org/10.1039/C7GC00425G
6. Rayen M., Reyes-Dίaz M., Ivanov A. G., Mora M. L., Alberdi M. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. 2010;10(4):470-481. DOI: http://dx.doi.org/10.4067/S0718-95162010000200008
7. Liang H. Z., Zhu F., Wang R. J., Huang X.-H., Chu J.-J. Photosystem II of Ligustrum lucidum in response to different levels of manganese exposure. Scientific Reports. 2019;9:12568. DOI: https://doi.org/10.1038/s41598-019-48735-8
8. Shikhova L. N., Zubkova O. A. Modification of mobile manganese content in the podzolic soils during growth season. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2012;2(27):35-39. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=17532819
9. Zubkova O. A. Modification of acid-soluble manganese content in the podzolic soils. Agrarnaya nauka EvroSevero-Vostoka = Agricultural Science Euro-North-East. 2015;44(1):46-52. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=22856651
10. Nebolsin A. N., Nebolsina Z. P. Optimal parameters of acidity of sod-podzolic soil for plants. Agrokhimiya. 1997;(6):9-26. (In Russ.).
11. Pasynkov A. V., Svetlakova E. V., Kotelnikova N. V., Abashev V. D., Pasynkova E. N., Sadakova G. G., Balandina S. A., Dunyasheva G. I., Rubleva N. V., Tatarinova M. S. The influence of long-term application of fertilizers on fertility of soddy-podzolic soil, productivity of crop rotation and grain quality. Agrokhimiya. 2016;(10):38-47. (In Russ.). URL: https://elibrary.ru/item.asp?id=27169477
12. Rodina N. A., Shchennikova I. N., Kokina L. P. Reaction of barley varieties on the different methods technology. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2009;8:14-16. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=12979727
13. Husted S., Laursen K. H., Hebbern C. A., Schmidt S. B., Pedas P., Haldrup A., Jensen P. E. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiology. 2009;150(2):825-833. DOI: https://doi.org/10.1104/pp.108.134601
14. Schmidt S., Pedas P., Laursen K., Schjoerring J., Husted S. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant and Soil. 2013;372:417-429. DOI: https://doi.org/10.1007/s11104-013-1702-4
15. Giorio P., Sellami M. H. Polyphasic OKJIP chlorophyll a fluorescence transient in a landrace and a commercial cultivar of sweet pepper (Capsicum annuum L.) under long-term salt stress. Plants. 2021;10(5):887. DOI: https://doi.org/10.3390/plants10050887
16. Yusuf M. A., Kumar D., Rajwanshi R., Strasser R. J., Tsimilli-Michael M., Govindjee, Sarin N. B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. BBA-Bioenergetics. 2010;1797(8):1428-1438. DOI: https://doi.org/10.1016/j.bbabio.2010.02.002
17. Mlinarić S., Dunić J. A., Babojelić M. S., Cesar V., Lepeduš H. Differential accumulation of photosynthetic proteins regulates diurnal photochemical adjustments of PSII in common fig (Ficus carica L.) leaves. Journal of Plant Physiology. 2017;209:1-10. DOI: https://doi.org/10.1016/j.jplph.2016.12.002
18. Ergo V. V., Veas R. E., Vega C. R. C., Lascano R., Carrera C. S. Leaf photosynthesis and senescence in heated and droughted fieldgrown soybean with contrasting seed protein concentration. Plant Physiology and Biochemistry. 2021;166:437-447. DOI: https://doi.org/10.1016/j.plaphy.2021.06.008
19. Markulj Kulundžić A., Kovačević J., Viljevac Vuletić M., Josipović A., Liović I., Mijić A., Lepeduš H., Matoša Kočar M. Impact of abiotic stress on photosynthetic efficiency and leaf temperature in sunflower. Poljoprivreda. 2016;22(2):17-22. DOI: https://doi.org/10.18047/poljo.22.2.3
20. Bano H., Athar H., Zafar Z. U., Kalaji H. M., Ashraf M. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum. 2020;172(2):1244-1254. DOI: https://doi.org/10.1111/ppl.13327
21. Singh S., Prasad S. M. Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: Photosynthesis and nitrogen metabolism. Plant Growth Regulation. 2017;82:161-173. DOI: https://doi.org/10.1007/s10725-017-0248-5
22. Pavlović I., Mlinarić S., Tarkowska D, Oklestkova J., Novak O., Lepeduš H., Vujčić Bok V., Radić Brkanac S., Strnad M., Salopek-Sondi B. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabagge, and kale. Frontiers in Plant Science. 2019;10:450. DOI: https://doi.org/10.3389/fpls.2019.00450
23. Mihaljević I., Viljevac Vuletić M., Šimić D., Tomaš V., Horvat D., Josipović M., Zdunić Z., Dugalić K., Vuković D. Comparative study of drought stress effects on traditional and modern apple cultivars. Plants. 2021;10(3):561. DOI: https://doi.org/10.3390/plants10030561
24. Matoša Kočar M., Josipović A., Sudarić A., Duvnjak T., Viljevac Vuletić M., Marković M., Markulj Kulundžić A. Chlorophyll a fluorescence as tool in breeding drought stress-tolerant soybean. Journal of Central European Agriculture. 2022;23(2):305-317. DOI: https://doi.org/10.5513/jcea01/23.2.3437
Review
For citations:
Lisitsyn E.M., Churakova S.A. Activity of photosystem II in spring barley leaves under the action of manganese ions. Agricultural Science Euro-North-East. 2023;24(1):66-76. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.1.66-76