Preview

Аграрная наука Евро-Северо-Востока

Расширенный поиск

Перспективы использования эндофитных и экстремофильных микроорганизмов в борьбе с фитопатогенами сельскохозяйственных культур (обзор)

https://doi.org/10.30766/2072-9081.2023.24.5.720-738

Аннотация

В годы с острой эпифитотической обстановкой инфекционные заболевания растений вызывают значительные потери урожая. Для обеспечения продуктивности сельскохозяйственных культур используют пестициды – вещества химической природы, защищающие растения от фитопатогенов. Повсеместное применение пестицидов приводит к загрязнению почвенных и водных ресурсов, изменениям в микробиоме, нарушению нормального роста и развития растений. С целью минимизировать антропогенное влияние на территории агропромышленного комплекса и обеспечить защиту культурных растений от биотических стрессов разработаны экологически безопасные аналоги пестицидов химической природы – биопестициды на основе бактерий и грибов (получили большее распространение), а также вирусов. В обзоре на основе анализа 105 научных источников рассмотрены преимущества данных препаратов, описаны перспективные агенты биологического контроля, которые могут быть включены в их состав, а именно эндофитные (колонизируют ткани растений) и экстремофильные (выживают в агрессивных условиях окружающей среды) микроорганизмы. Применение эндофитных микроорганизмов в борьбе с инфекционными заболеваниями растений перспективно за счет их способности оказывать непосредственное влияние на рост сельскохозяйственных культур, в частности на их индуцированную резистентность. Положительный эффект от применения экстремофильных микроорганизмов связан с универсальностью их использования, а именно способностью сохранять эффективность в различных почвенно-климатических условиях.

Об авторах

Е. Р. Фасхутдинова
ФГБОУ ВО «Кемеровский государственный университет»
Россия

Фасхутдинова Елизавета Рафаиловна, младший научный сотрудник лаборатории фиторемедиации техногенно нарушенных экосистем

 ул. Красная, д. 6, г. Кемерово, 650000



Ю. В. Голубцова
ФГБОУ ВО «Кемеровский государственный университет»
Россия

Голубцова Юлия Владимировна, доктор техн. наук, проректор по развитию имущественного комплекса

 ул. Красная, д. 6, г. Кемерово, 650000



О. А. Неверова
ФГБОУ ВО «Кемеровский государственный университет»
Россия

Неверова Ольга Александровна, доктор биол. наук, профессор, заведующий кафедрой экологии и природопользования

 ул. Красная, д. 6, г. Кемерово, 650000



Т. А. Ларичев
ФГБОУ ВО «Кемеровский государственный университет»
Россия

Ларичев Тимофей Альбертович, кандидат хим. наук

 ул. Красная, д. 6, г. Кемерово, 650000



Н. Н. Хорошкина
ФГБОУ ВО «Кемеровский государственный университет»
Россия

Хорошкина Наталья Николаевна, младший научный сотрудник лаборатории фиторемедиации техногенно нарушенных экосистем

 ул. Красная, д. 6, г. Кемерово, 650000



Список литературы

1. Drakopoulos D., Kägi A., Six J., Zorn A., Wettstein F. E., Bucheli T. D., Forrer H., Vogelgsang S. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agricultural Systems. 2021;192:103198. DOI: https://doi.org/10.1016/j.agsy.2021.103198

2. Mu H., Yang X., Wang K., Tang D., Xu W., Liu X., Ritsema C. J., Geissen V. Ecological risk assessment of pesticides on soil biota: An integrated field-modelling approach. Chemosphere. 2023;326:138428. DOI: https://doi.org/10.1016/j.chemosphere.2023.138428

3. Asyakina L. K., Vorob'eva E. E., Proskuryakova L. A., Zharko M. Yu. Evaluating extremophilic microorganisms in industrial regions. Foods and Raw Materials. 2023;11(1):162-171. DOI: http://doi.org/10.21603/2308-4057-2023-1-556

4. Rani L., Thapa K., Kanojia N., Sharma N., Singh S., Grewal A. S., Srivastav A. L., Kaushal J. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production. 2021;283:124657. DOI: https://doi.org/10.1016/j.jclepro.2020.124657

5. Милентева И. С., Фотина Н. В., Жарко М. Ю., Проскурякова Л. А. Перспективы использования микробных препаратов для снижения окислительного стресса сельскохозяйственных растений. Техника и технология пищевых производств. 2022;52(4):750-761. DOI: https://doi.org/10.21603/2074-9414-2022-4-2403 EDN: EDMFLC

6. Mostafalou S., Abdollahi M. Pesticides: an update of human exposure and toxicity. Archives of Toxicology. 2017;91(2):549-599. DOI: https://doi.org/10.1007/s00204-016-1849-x

7. Bolognesi C., Holland N. The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutation Research/ Reviews in Mutation Research. 2016;770(A):183-203. DOI: https://doi.org/10.1016/j.mrrev.2016.04.006

8. Patel O., Syamlal G., Henneberger P. K., Alarcon W. A., Mazurek J. M. Pesticide use, allergic rhinitis, and asthma among US farm operators. Journal of Agromedicine. 2018;23(4):327-335. DOI: https://doi.org/10.1080%2F1059924X.2018.1501451

9. Dhananjayan V., Ravichandran B. Occupational health risk of farmers exposed to pesticides in agricultural activities. Current Opinion in Environmental Science & Health. 2018;4:31-37. DOI: https://doi.org/10.1016/j.coesh.2018.07.005

10. Sun S., Sidhu V., Rong Y., Zheng Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: a Review. Current Pollution Reports. 2018;4:240-250. DOI: https://doi.org/10.1007/s40726-018-0092-x

11. Alengebawy A., Abdelkhalek S. T., Qureshi S. R., Wang M. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021;9(3):42. DOI: https://doi.org/10.3390/toxics9030042

12. Alexandrino D. A. M., Mucha A. P., Almeida C. M. R., Carvalho M. F. Microbial degradation of two highly persistent fluorinated fungicides – epoxiconazole and fludioxonil. Journal of Hazardous Materials. 2020;394:122545. DOI: https://doi.org/10.1016/j.jhazmat.2020.122545

13. Sule R. O., Condon L., Gomes A. V. A Common Feature of Pesticides: Oxidative Stress – The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxidative Medicine and Cellular Longevity. 2022;2022:31. DOI: https://doi.org/10.1155/2022/5563759

14. Shahid M., Ahmed B., Zaidi A., Khan M. S. Toxicity of fungicides to Pisum sativum: a study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Advances. 2018;8(67):38483-38498. DOI: https://doi.org/10.1039/c8ra03923b

15. Satapute P., Kamble M. V., Adhikari S. S., Jogaiah S. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment. 2019;651(2):2334-2344. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.099

16. Monkiedje A., Ilori M. O., Spiteller M. Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology and Biochemistry. 2002;34(12):1939-1948. DOI: https://doi.org/10.1016/S0038-0717(02)00211-0

17. Wołejko E., Jabłońska-Trypuć A., Wydro U., Butarewicz A., Łozowicka B. Soil biological activity as an indicator of soil pollution with pesticides – a review. Applied Soil Ecology. 2020;147:103356. DOI: https://doi.org/10.1016/j.apsoil.2019.09.006

18. Cenkseven S., Kocak B., Kuzu S. B., Korkmaz-Guvenmez H., Darici C. Response of microbial activity to addition of Nerium oleander L. leaves in soil under different moisture conditions. Fresenius Environmental Bulletin. 2017;26(12a):377-385. URL: https://www.researchgate.net/publication/321716956_Response_of_microbial_activity_to_addition_of_Nerium_oleander_L_leaves_in_soil_under_different_moisture_conditions

19. Feng J., Wei K., Chen Z. H., Lü X., Tian J., Wang C., Chen L. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern china: evidence from ecoenzymatic stoichiometry. Global Biogeochemical Cycles. 2019;33(5):559-569. DOI: https://doi.org/10.1029/2018GB006112

20. Acar M., Celik I., Gunal H., Acir N., Barut Z. B., Budak M. Tillage effects on soil organic carbon, microbial biomass carbon and betaglucosidase enzyme activity in a typic haploxerert soil. Scientific Papers Series A. Agronomy. 2018;LXI(1):13-20. URL: https://agronomyjournal.usamv.ro/pdf/2018/issue_1/Art1.pdf

21. Fournier B., Santos S. P., Gustavsen J. A., Imfeld G., F. Lamy, Mitchell E. A. D., Mota M., Noll D., Planchamp C., Heger T. J. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Science of the Total Environment. 2020;738:139635. DOI: https://doi.org/10.1016/j.scitotenv.2020.139635

22. Lloyd A. W., Percival D., Yurgel S. N. Effect of Fungicide Application on Lowbush Blueberries Soil Microbiome. Microorganisms. 2021;9(7):1366. DOI: https://doi.org/10.3390/microorganisms9071366

23. Katsoula A., Vasileiadis S., Sapountzi M., Karpouzas D. G. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiology Ecology. 2020;96(6):fiaa056. DOI: https://doi.org/10.1093/femsec/fiaa056

24. Wang X., Li X., Wang Y., Qin Y., Yan B., Martyniuk C. J. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environmental Pollution. 2021;275:116671. DOI: https://doi.org/10.1016/j.envpol.2021.116671

25. Завялова Я. С., Богданова В. Д. Влияние пестицидов на организм человека. Medicus. 2017;(1):16-18. Режим доступа: https://www.elibrary.ru/item.asp?id=27812742 EDN: XKQHCL

26. Бойко Т. В., Герунова Л. К., Герунов В. И., Гонохова М. Н. Токсикологическая характеристика неоникотиноидов. Вестник Омского государственного аграрного университета. 2015;(4(20)):49-54. Режим доступа: https://www.elibrary.ru/item.asp?id=25108645 EDN: VDLTRD

27. McCarroll N. E., Protzel A., Ioannou Y., Stack H. F., Jackson M. A., Waters M. D., Dearfield K. L. A survey of EPA/OPP and open literature on selected pesticide chemicals. III. Mutagenicity and carcinogenicity of benomyl and carbendazim. Mutation Research/Reviews in Mutation Research. 2002;512(1):1-35. DOI: https://doi.org/10.1016/s1383-5742(02)00026-1

28. Sviridov A. V., Shushkova T. V., Ermakova I. T., Ivanova E. V., Epiktetov D. O., Leontievsky A. A. Microbial degradation of glyphosate herbicides (review). Applied Biochemistry and Microbiology. 2015;51(2):188-195. DOI: https://doi.org/10.1134/S0003683815020209

29. Дулатов А. Ю., Аманкулова А. А., Макимбетов Е. К. Роль химических агентов в генезе острых лейкозов у детей. Современные проблемы науки и образования. 2020;(2):165. DOI: https://doi.org/10.17513/spno.29663 EDN: OWCRLH

30. Турова Н. А., Паскарелов С. И. Влияние пестицидов на организм человека. Modern Science. 2020;(12-3):11-14. Режим доступа: https://www.elibrary.ru/item.asp?id=44405003 EDN: QNQRZX

31. Ruiu L. Microbial Biopesticides in Agroecosystems. Agronomy. 2018;8(11):235. DOI: https://doi.org/10.3390/agronomy8110235

32. Kumar J., Ramlal A., Mallick D., Mishra V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants. 2021;10(6):1185. DOI: https://doi.org/10.3390/plants10061185

33. Kesho A. Microbial bio-pesticides and their use in integrated pest management. Chemical and Biomolecular Engineering. 2020;5(1):26-34. DOI: http://dx.doi.org/10.11648/j.cbe.20200501.15

34. Salimi F., Hamedi J. Biofertilizers: Microbes for Agricultural Productivity. Chapter 14. In Book: Soil Microbiomes for Sustainable Agriculture. Baru Sahib.: Springer, 2021. pp. 407-469. DOI: https://doi.org/10.1007/978-3-030-73507-4

35. Chakraborty N., Mitra R., Pal S., Ganguly R., Acharya K., Minkina T., Sarkar A., Keswani C. Biopesticide Consumption in India: Insights into the Current Trends. Agriculture. 2023;13(3):557. DOI: https://doi.org/10.3390/agriculture13030557

36. Yadav R., Singh S., Singh A. N. Biopesticides: Current status and future prospects. Proceedings of the International Academy of Ecology and Environmental Sciences. 2022;12(3):211-233. URL: http://www.iaees.org/publications/journals/piaees/articles/2022-12(3)/biopesticides-current-status-and-future-prospects.pdf

37. Essiedu J. A., Adepoju F. O., Ivantsova M. N. Benefits and limitations in using biopesticides: A review. AIP Conference Proceedings. 2020;2313(1):080002. DOI: https://doi.org/10.1063/5.0032223

38. Itkina D. L., Suleimanova A. D., Sharipova M. R. Isolation, Purification, and Identification of the Secretion Compound Pantoea brenneri AS3 with Fungicidal Activity. Applied Biochemistry and Microbiology. 2022;58:456-462. DOI: https://doi.org/10.1134/S000368382204007X

39. Salomon M. V., Pinter I. F., Piccoli P., Bottini R. Use of Plant Growth-Promoting Rhizobacteria as Biocontrol Agents: Induced Systemic Resistance Against Biotic Stress in Plants. Microbial Applications. 2017;2:133-152. DOI: https://doi.org/10.1007/978-3-319-52669-0_7

40. Догадина М. А., Таракин А. В., Игнатова Г. А., Степанова Е. И., Велкова Н. И., Касаточкина М. Ю., Правдюк А. И., Криворотова Е. И. Аспекты снижения пестицидной нагрузки на экосистемы. Вестник аграрной науки. 2022;(5(98)):107-113. DOI: https://doi.org/10.17238/ISSN2587-666X.2022.5.107 EDN: UCJUZR

41. Сафроновская Г. Биопестициды – перспективный сегмент рынка средств защиты растений. Наше сельское хозяйство. 2021;1(249):28-35

42. Arthurs S., Dara S. K. Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology. 2019;165:13-21. DOI: https://doi.org/10.1016/j.jip.2018.01.008

43. Verma D. K., Guzmán K. N. R., Mohapatra B., Talukdan D., Chávez-Conzález M. L., Kumar V., Srivastava S., Singh V., Yulianto R., Malar S. E., Ahmad A., Utama G. L., Aguilar C. N. Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security. Recent Developments in Microbial Technologies. 2021. pp.1-37. DOI: http://dx.doi.org/10.1007/978-981-15-4439-2_1

44. Khan A. R., Mustafa A., Hyder S., Valipour M., Rizvi Z. F., Gondal A. Sh., Yousuf Z., Iqbal R., Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology. 2022;11(12):1763. DOI: https://doi.org/10.3390/biology11121763

45. Arnaouteli S., Bamford N. C., Stanley-Wall N. R., Kovács Á. T. Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology. 2021;19(9):600-614. DOI: https://doi.org/10.1038/s41579-021-00540-9

46. Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific reports. 2015;5(1):12975. DOI: https://doi.org/10.1038/srep12975

47. Zhang L., Jin M., Shi X., Jin L., Hou X., Yu Y., Liu B., Cao J., Quan C. Macrolactin metabolite production by Bacillus sp. ZJ318 isolated from marine sediment. Applied Biochemistry and Biotechnology. 2022;194(6):2581-2593. DOI: https://doi.org/10.1007/s12010-022-03841-8

48. Romero-Tabarez M., Jansen B., Sylla M., Luensdorf H., Häussler S., Santosa D. A., Timmis K. N., Molinari G. 7-O-Malonyl macrolactin A, a new macrolactin antibiotiic from Bacillus subtilis – active against methicillinresistent Staphylococcus aureus, vancomycin-resistent enterococci and a small-colony variant of Burkholderia cepacia. Antimicrobial Agents and Chemotherapy. 2006;50(5):1701-1709. DOI: https://doi.org/10.1128/aac.50.5.1701-1709.2006

49. Yu Z., Sun Z., Yin J., Qiu J. Enhanced production of polymyxin E in Paenibacillus polymyxa by replacement of glucose by starch. BioMed research international. 2018;2018:1934309. DOI: https://doi.org/10.1155/2018/1934309

50. Mülner P., Schwarz E., Dietel K., Herfort S., Jähne J., Lasch P., Cernava T., Berg G., Vater J. Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens. 2021;10(11):1485. DOI: https://doi.org/10.3390/pathogens10111485

51. Fischer S., Príncipe A., Alvarez F., Cordero P., Castro M., Godino A., Jofré E., Mori G.Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. Symbiotic Endophytes. 2013;37:165-193. DOI: https://doi.org/10.1007/978-3-642-39317-4_9

52. Raio A., Brilli F., Baraldi R., Neri L., Puopolo G. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiological Research. 2020;239:126517. DOI: https://doi.org/10.1016/j.micres.2020.126517

53. Nandi M., Selin C., Brawerman G., Fernando W. G. D., Kievit T. Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control. 2017;108:47-54. DOI: https://doi.org/10.1016/j.biocontrol.2017.02.008

54. Huang R., Feng Z., Chi X., Sun X., Lu Ya., Zhang B., Lu R., Luo W., Wang Ya., Miao J., Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiological research. 2018;215:55-64. DOI: https://doi.org/10.1016/j.micres.2018.06.008

55. Anand A., Chinchilla D., Tan C., Mène-Saffrané L., L’Haridon F., Weisskopf L. Contribution of Hydrogen Cyanide to the Antagonistic Activity of Pseudomonas Strains Against Phytophthora infestans. Microorganisms. 2020;8(8):1144. DOI: https://doi.org/10.3390/microorganisms8081144

56. Lyubenova A., Rusanova М., Nikolova M., Slavov S.B. Plant extracts and Trichoderma spp: possibilities for implementation in agriculture as biopesticides. Biotechnology & Biotechnological Equipment. 2023;37(1):159-166. DOI: https://doi.org/10.1080/13102818.2023.2166869

57. Siebatcheu E. C., Wetadieu D., Youassi O. Y., Boat M. A. B., Bedane K. G., Tchameni N. S., Sameza M. L. Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Natural Product Research. 2023;37(4):657-662. DOI: https://doi.org/10.1080/14786419.2022.2075360

58. Sridharan A. P., Thangappa S., Karthikeya G., Nakkeeran S. Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microbial Pathogenesis. 2021;150:104714. DOI: https://doi.org/10.1016/j.micpath.2020.104714

59. Baazeem A., Almanea A., Manikanda P., Alorabi M., Vijayaraghavan P., Abdel-Hadi A. In Vitro Antibacterial, Antifungal, Nematocidal and Growth Promoting Activities of Trichoderma hamatum FB10 and Its Secondary Metabolites. Journal of Fungi. 2021;7(5):331. DOI: https://doi.org/10.3390/jof7050331

60. El-Benawy N. M., Abdel-Fattah G. M., Ghoneem K. M., Shabana Y. M. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egyptian Journal of Basic and Applied Sciences. 2020;7(1):267-280. DOI: https://doi.org/10.1080/2314808X.2020.1809849

61. Rodríguez C. H., Evans H. C., de Abreu L. M., de Macedo D. M., Ndacnou M. K., Bekele K. B., Barreto R. W. Author Correction: New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific Reports. 2021;11(1):19229. DOI: https://doi.org/10.1038/s41598-021-97704-7

62. Morales-Cedeño L. R., Orozco-Mosqueda M. C., Loeza-Lara P. D., Parra-Cota F. I., Santos-Villalobos S., Santoyo G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research. 2021;242:126612. DOI: https://doi.org/10.1016/j.micres.2020.126612

63. Latz M. A., Jensen B., Collinge D. B., Jørgensen H. J. L. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology & Diversity. 2018;11(5-6):555-567. DOI: https://doi.org/10.1080/17550874.2018.1534146

64. Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M. C., Glick B. R. Plant growth-promoting bacterial endophytes. Microbiological research. 2016;183:92-99. DOI: https://doi.org/10.1016/j.micres.2015.11.008

65. Rodrigo S., García-Latorre C., Santamaria O. Metabolites Produced by Fungi against Fungal Phytopathogens: Review, Implementation and Perspectives. Plants. 2022;11(1):81. DOI: https://doi.org/10.3390/plants11010081

66. Fadiji A. E., Babalola O. O. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Frontiers Bioengineering and Biotechnology. 2020;8:467. DOI: https://doi.org/10.3389/fbioe.2020.00467

67. Mulero-Aparicio A., Agustí-Brisach C., Varo Á., López-Escudero F. J., Trapero A. A non-pathogenic strain of Fusarium oxysporum as a potential biocontrol agent against Verticillium wilt of olive. Biological Control. 2019;139:104045. DOI: https://doi.org/10.1016/j.biocontrol.2019.104045

68. Zheng Y. K., Miao C. P., Chen H. H., Huang F. F., Xia Yu. M., Chen Yo. W., Zhao L. X. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. Journal of Ginseng Research. 2017;41(3):353-360. DOI: https://doi.org/10.1016/j.jgr.2016.07.005

69. Yehia R. S., Osman G. H., Assaggaf H., Salem R., Mohamed M. S. M. Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. South African Journal of Botany. 2020;134:296-302. DOI: https://doi.org/10.1016/j.sajb.2020.02.033

70. Terhonen E., Sipari N., Asiegbu F. O. Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biological Control. 2016;99:53-63. DOI: https://doi.org/10.1016/j.biocontrol.2016.04.006

71. Baiyee B., Ito S., Sunpapao A. J. P. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology. 2019;106:96-101. DOI: https://doi.org/10.1016/j.pmpp.2018.12.009

72. Talapatra K., Das A. R., Saha A., Das P. In vitro antagonistic activity of a root endophytic fungus toward plant pathogenic fungi. Journal of Applied Biology and Biotechnology. 2017;5(2):68-71. DOI: https://doi.org/10.7324/JABB.2017.50210

73. Yuan Y., Feng H., Wang L., Li Z., Shi Y., Zhao L., Feng Z., Zhu H. Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS ONE. 2017;12:e0170557. DOI: https://doi.org/10.1371/journal.pone.0170557

74. Landum M. C., Félix M. D. R., Alho J., Garcia R., Cabrita M. J., Rei F., Varanda C. M. R. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research. 2016;183:100-108. DOI: https://doi.org/10.1016/j.micres.2015.12.001

75. Yao Y. Q., Lan F., Qiao Y. M., Wei J. G., Huang R. S., Li L. B. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. MicrobiologyOpen. 2017;6(3):e00437. DOI: https://doi.org/10.1002/mbo3.437

76. Park Y. H., Mishra R. C., Yoon S., Kim H., Park C., Seo S. T., Bae H. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. Journal of Ginseng Research. 2019;43(3):408-420. DOI: https://doi.org/10.1016/j.jgr.2018.03.002

77. Liu Y., Bai F., Li T., Yan H. An endophytic strain of genus Paenibacillus isolated from the fruits of Noni (Morinda citrifolia L.) has antagonistic activity against a Noni’s pathogenic strain of genus Aspergillus. Microbial Pathogenesis. 2018;125:158-163. DOI: https://doi.org/10.1016/j.micpath.2018.09.018

78. Anisha C., Jishma P., Bilzamol V. S., Radhakrishnan E. K. Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatalisys and Agricultural Biotechnology. 2018;14:116-119. DOI: https://doi.org/10.1016/j.bcab.2018.02.015

79. Santos C. M., Ribeiro A. S., Garcia A., Polli A. D., Polonio J. C., Azevedo J. L., Pamphile J. A. Enzymatic and antagonist activity of endophytic fungi from Sapindus saponaria L. (Sapindaceae). Acta Biologica Colombiana. 2019;24:322-330. DOI: https://doi.org/10.15446/abc.v24n2.74717

80. Manganyi M. C., Regnier T., Tchatchouang C. K., Bezuidenhout C. C., Ateba C. N. Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Annals of Microbiology. 2019;69:659-663. DOI: https://doi.org/10.1007/s13213-019-1444-5

81. Li Y., Wei W., Wang R. L., Liu F., Wang Y. K., Li R., Khan B., Lin J., Yan W., Ye Y. H. Colletolides A and B, two new γ-butyrolactone derivatives from the endophytic fungus Colletotrichum gloeosporioides. Phytochemistry Letters. 2019;33:90-93. DOI: https://doi.org/10.1016/j.phytol.2019.08.004

82. Wu Z., Zhang X., Anbari W. H. A., Zhou Q., Zhou P., Zhang M., Zeng F., Chen C., Tong Q., Wang J., Zhu H., Zhang Yo. Cysteine residue containing merocytochalasans and 17, 18-seco-aspochalasins from Aspergillus micronesiensis. Journal of Natural Products. 2019;82(9):2653-2658. DOI: https://doi.org/10.1021/acs.jnatprod.9b00016

83. Gupta S., Choudhary M., Singh B., Singh R., Dhar M. K., Kaul S. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatalysis and Agricultural Biotechnology. 2022;39:102234. DOI: https://doi.org/10.1016/j.bcab.2021.102234

84. Lin W., Zeng J., Wan K., Lv L., Guo L., Li X., Yu X. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environment international. 2018;120:63-71. DOI: https://doi.org/10.1016/j.envint.2018.07.035

85. Abdenaceur R., Farida B., Mourad D., Rima H., Zahia O., Fatma S. Effective biofertilizer Trichoderma spp. isolates with enzymatic activity and metabolites enhancing plant growth. International Microbiology. 2022;25:817-829. DOI: https://doi.org/10.1007/s10123-022-00263-8

86. Naik B. S. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis. 2019;79:99-115. DOI: https://doi.org/10.1007/s13199-019-00635-1

87. Tchameni S. N., Cotârleţ, M., Ghinea I. O. Bedine M. A. B., Sameza M. L., Borda D., Bahrim G., Dinică R. M. Involvement of lytic enzymes and secondary metabolites produced by Trichoderma spp. in the biological control of Pythium myriotylum. International Microbiology. 2020;23:179-188. DOI: https://doi.org/10.1007/s10123-019-00089-x

88. Aoki Y., Haga S., Suzuki S. Direct antagonistic activity of chitinase produced by Trichoderma sp. SANA20 as biological control agent for grey mould caused by Botrytis cinerea. Cogent Biology. 2020;6(1):1747903. DOI: https://doi.org/10.1080/23312025.2020.1747903

89. Kolombet L. V. Fungi of the genus Trichoderma are producers of biological products for crop production. Biological features that ensure their activity as producers of biological products. Prikladnaya toksikologiya. 2010;1:42-48.

90. Loc N. H., Huy N. D., Quang H. T., Lan T. T., Thu Ha T. T. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020;11(1):38-48. DOI: https://doi.org/10.1080/21501203.2019.1703839

91. Gentile A., Deng Z., La Malfa S., Distefano G., Domina F., Vitale A., Polizzi G., Lorito M., Tribulato E. Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breeding. 2007;126(2):146-151. DOI: https://doi.org/10.1111/j.1439-0523.2007.01297.x

92. Hasan S., Gupta G., Anand S., Kaur H. Lytic enzymes of Trichoderma: their role in plant defense. International Journal of Applied Research and Studies. 2014;3(2):1-5. URL: https://www.researchgate.net/publication/260983686_Lytic_Enzymes_of_Trichoderma_Their_Role_in_Plant_Defense

93. Синицына О. А., Рубцова Е. А., Синельников И. Г., Осипов Д. О., Рожкова А. М., Матыс В. Ю., Бубнова Т. В., Немашкалов В. А., Середа А. С., Щербакова Л. А., Синицын А. П. Создание продуцента хитиназы и использование её препарата для разрушения клеточной стенки микроскопических грибов. Биохимия. 2020;85(6):840-848. DOI: https://doi.org/10.31857/S0320972520060093 EDN: QFHTYP

94. Актуганов Г. Е., Галимзианова Н. Ф., Мелентев А. И., Кузмина Л. Ю. Внеклеточные гидролазы штамма Bacillus sp. 739 и их участие в лизисе клеточных стенок микромицетов. Микробиология. 2007;76(4):471-479.

95. Ха Т. З., Канарский А. В., Канарская З. А., Щербаков А. В., Щербакова Е. Н. Перспектива применения бактерий рода Paenibacillus в промышленной биотехнологии для получения биопрепаратов сельскохозяйственного назначения. Вестник Поволжского государственного технологического университета. Серия: Лес. Экология. Природопользование. 2020;3(47):74-84. DOI: https://doi.org/10.25686/2306-2827.2020.3.74 EDN: EBCZEU

96. Hamayun M., Hussain A., Iqbal A., Khan S. A., Lee I. J. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Research International. 2018;2018:7696831. DOI: https://doi.org/10.1155/2018/7696831

97. Ismail I., Hamayun M., Hussain A., Iqbal A., Khan S. A., Khan M. A., Lee I. An Endophytic Fungus Gliocladium cibotii Regulates Metabolic and Antioxidant System of Glycine max and Helianthus annuus under Heat Stress. Polish Journal of Environmental Studies. 2021;30(2):1631-1640. DOI: https://doi.org/10.15244/pjoes/125770

98. Jan F. G., Hamayun M., Hussain A., Jan G., Iqbal A., Khan A., Lee I. An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC microbiology. 2019;19(1):3. DOI: https://doi.org/10.1186%2Fs12866-018-1374-6

99. Gupta S., Schillaci M., Walker R., Smith P., Watt M., Roessner U. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil. 2021;461(1):219-244. DOI: https://link.springer.com/article/10.1007/s11104-020-04618-w

100. Bilal S., Shahzad R., Khan A. L., Al-Harrasi A., Kim C. K., Lee I. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. Journal of hazardous materials. 2019;379:120824. DOI: https://doi.org/10.1016/j.jhazmat.2019.120824

101. Odoh C. K., Obi C. J., Francis A., Unah U. V., Egbe K., Akpi U. K., Lerum N., Wanderi K. Extremophilic Fungi and Their Role in Control of Pathogenic Microbes. Recent Trends in Mycological Research. 2021. pp.219-249. DOI: https://doi.org/10.1007/978-3-030-60659-6_10

102. Carreras-Villaseñor N., Sánchez-Arreguín J. A., Herrera-Estrella A. H. Trichoderma: sensing the environment for survival and dispersal. Microbiology. 2012;158(1):3-16. DOI: https://doi.org/10.1099/mic.0.052688-0

103. Kalu A. U., Kenneth O. C. Antimicrobial Activity of Pleurotus squarrosulus on Clinical Pathogenic Bacteria and Fungi. Journal of Advances in Microbiology. 2017;4(3):1-9. DOI: https://doi.org/10.9734/JAMB/2017/34644

104. Santos A. P., Muratore L. N., Solé-Gil A., Farías M. E., Ferrando A., Blázquez M. A., Belfiore C. Extremophilic bacteria restrict the growth of Macrophomina phaseolina by combined secretion of polyamines and lytic enzymes. Biotechnology Reports. 2021;32:e00674. DOI: https://doi.org/10.1016/j.btre.2021.e00674

105. Tapia-Vázquez I., Sánchez-Cruz R., Arroyo-Domínguez M., Lira-Ruan V., Sánchez-Reyes A., Sánchez-Carbente M. D. R., Padilla-Chacón D., Batista-García R. A., Folch-Mallol J. L. Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiological Research. 2020;232:126394. DOI: https://doi.org/10.1016/j.micres.2019.126394

106. Rondón J. J., Ball M. M., Castro L. T., Yarzábal L. A. Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures. Environmental Sustainability. 2019;2:265-275. DOI: https://doi.org/10.1007/s42398-019-00072-2

107. Abbas R., Rasul S., Aslam K., Baber M., Shahid M., Mubeen F., Naqqash T. Halotolerant PGPR: A hope for cultivation of saline soils. Journal of King Saud University – Science. 2019;31(4):1195-1201. DOI: https://doi.org/10.1016/j.jksus.2019.02.019


Рецензия

Для цитирования:


Фасхутдинова Е.Р., Голубцова Ю.В., Неверова О.А., Ларичев Т.А., Хорошкина Н.Н. Перспективы использования эндофитных и экстремофильных микроорганизмов в борьбе с фитопатогенами сельскохозяйственных культур (обзор). Аграрная наука Евро-Северо-Востока. 2023;24(5):720-738. https://doi.org/10.30766/2072-9081.2023.24.5.720-738

For citation:


Faskhutdinova E.R., Golubtsova Yu.V., Neverova O.A., Larichev T.A., Khoroshkina N.N. Prospects for the use of endophytic and extremophilic microorganisms in the fight against phytopathogens of agricultural crops (review). Agricultural Science Euro-North-East. 2023;24(5):720-738. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.5.720-738

Просмотров: 495


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)