Preview

Agricultural Science Euro-North-East

Advanced search

Search for genetic markers for selection and breeding aimed at increasing birth weight of piglets

https://doi.org/10.30766/2072-9081.2023.24.5.839-848

Abstract

With the intensive increase in the fertility traits of sows, the problem of decreasing the weight of piglets at birth has arisen. In this connection, the search for genetic variants associated with the birth weight of piglets is of particular relevance and scientific significance. The aim of the work was to identify genetic variants associated with piglet weight at birth and test them to select optimal genetic markers for selection and breeding work to improve reproductive performance of pigs on the basis of full genomic genotyping data using the Fst method. The studies were conducted in 2020-2022 on Large White pigs (n=239) bred at CJSC Plemzavod-Yubileiny in the Tyumen Region. Genotyping was performed using GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc., USA). Genomic data were filtered according to the following parameters --geno 0.1, -mind 0.1, -maf 0.05, -hwe 1e-7, --indep-pairwise 50 5 0.8. To identify genomic regions associated with piglet birth weight, there was used Fst statistics comparing genetic variants in pigs between two groups with high and low indices. Those in which the Fst values exceeded the quantile level of 0.999 were considered significant variants. Student's test was used to evaluate the significance of the effects of variant genotypes on the birth weight and number of piglets at birth. The results showed that there was a moderate negative relationship (-0.351) between piglet birth weight and number of piglets at birth. 17 SNPs associated with birth weight of piglets were identified, 9 of which were located in the KIF13A, STK24, FDFT1, ADGRD1, STX2, TMEM132D, ENSSSCG00000054866, ENSSSCG00000058459 genes, as well as SNPs rs81450496, rs80887103 in intergenic regions have been identified as promising genetic markers for increase in birth weight of piglets. The results obtained can be used to create domestic breeding technologies that improve the efficiency of pig breeding.

About the Authors

E. A. Romanets
Don State Agrarian University
Russian Federation

Elena A. Romanets, graduate student

24 Krivoshlykova St., Persianovskiy settlement, 346493



T. S. Romanets
Don State Agrarian University
Russian Federation

Timofey S. Romanets, PhD in Agricultural Science, senior lecturer, the Department of Farm Animal Breeding, Private Zootechnics and Zoogygiene named after academician P.E. Ladan

24 Krivoshlykova St., Persianovskiy settlement, 346493

 



O. L. Tretyakova
Don State Agrarian University
Russian Federation

Olga L. Tretyakova, DSc in Agricultural Science, professor at the Department of Farm Animal Breeding, Private Zootechnics and Zoogygiene named after academician P.E. Ladan

24 Krivoshlykova St., Persianovskiy settlement, 346493



L. V. Getmantseva
Don State Agrarian University
Russian Federation

Lyubov V. Getmantseva, DSc in Biological Science, leading researcher

24 Krivoshlykova St., Persianovskiy settlement, 346493

 



References

1. Declerck I., Dewulf J., Sarrazin S., Maes D. Long-term effects of colostrum intake in piglet mortality and performance. Journal of Animal Science. 2016;94(4):1633-1643. DOI: https://doi.org/10.2527/jas.2015-9564

2. Rutherford K., Baxter E., D'eath R., Turner S., Arnott G., Roehe R., Ask B., Sandøe P., Moustsen V. A., Thorup F., Edwards S. A., Berg P., Lawrence A. B. The welfare implications of large litter size in the domestic pig I: biological factors. Animal Welfare. 2013;22(2):199-218. DOI: https://doi.org/10.7120/09627286.22.2.199

3. Tan C., Huang Z., Xiong W., Ye H., Deng J., Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. Journal of Animal Science and Biotechnology. 2022;13(1):28. DOI: https://doi.org/10.1186/s40104-022-00676-5

4. Ayuso M., Irwin R., Walsh C., Van Cruchten S., Van Ginneken C. Low birth weight female piglets show altered intestinal development, gene expression, and epigenetic changes at key developmental loci. The FASEB Journal. 2021;35(4):e21522. DOI: https://doi.org/10.1096/fj.202002587R

5. Liu Z. X., Wei H. K., Zhou Y. F., Peng J. Multi‐level mixed models for evaluating factors affecting the mortality and weaning weight of piglets in large‐scale commercial farms in central China. Animal Science Journal. 2018;89(5):760-769. DOI: https://doi.org/10.1111/asj.12963

6. Sukhovolskiy O. K. The importance of biotechnology in modern animal husbandry. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta = Izvestiya Saint-Petersburg State Agrarian University. 2019;(54):102-107. (In Russ.). DOI: https://doi.org/10.24411/2078-1318-2019-11102

7. Wang X., Liu X., Deng D., Yu M., Li X. Genetic determinants of pig birth weight variability. BMC Genetic. 2016;17(1):41-48. DOI: https://doi.org/10.1186/s12863-015-0309-6

8. Ajayi B., Akinokun J. Evaluation of some litter traits and heritability estimates of Nigerian Indigenous pigs. International Journal of Applied Agriculture and Apiculture Research. 2013;9(1-2):113-119. URL: https://www.ajol.info/index.php/ijaaar/article/view/96936

9. Putz A., Tiezzi F., Maltecca C., Gray K. A., Knauer M. Variance component estimates for alternative litter size traits in swine. Journal of Animal Science. 2015;93(11):5153-5163. DOI: https://doi.org/10.2527/jas.2015-9416

10. Banville M., Riquet J., Bahon D., Sourdioux M., Canario L. Genetic parameters for litter size, piglet growth and sow's early growth and body composition in the Chinese–European line Tai Zumu. Journal of Animal Breeding and Genetics. 2015;132(4):328-337. DOI: https://doi.org/10.1111/jbg.12122

11. Bekenev V. A. Ways to improve the gene pool of pigs of the Russian Federation. Vavilov Journal of Genetics and Breeding. 2018;22(8):912-921. DOI: https://doi.org/10.18699/VJ18.433

12. Bakoev S., Traspov A., Getmantseva L., Belous A., Karpushkina T., Kostyunina O., Usatov A., Tatarinova T. V. Detection of genomic regions associated malformations in newborn piglets: a machine-learning approach. PeerJ. 2021;9:e11580. DOI: https://doi.org/10.7717/peerj.11580

13. Bakoev S., Getmantseva L., Kostyunina O., Bakoev N., Prytkov Y., Usatov A., Tatarinova T. V. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia. PeerJ. 2021;9:e11595. DOI: https://doi.org/10.7717/peerj.11595

14. Bakoev S., Getmantseva L., Bakoev F., Kolosova M., Gabova V., Kolosov A., Kostyunina O. Survey of SNPs Associated with Total Number Born and Total Number Born Alive in Pig. Genes. 2020;11(5):491. DOI: https://doi.org/10.3390/genes11050491

15. Sell-Kubiak E. Selection for litter size and litter birthweight in Large White pigs: Maximum, mean and variability of reproduction traits. Animal. 2021;15(10):100352. DOI: https://doi.org/10.1016/j.animal.2021.100352

16. Distl O. Mechanisms of regulation of litter size in pigs on the genome level. Reproduction in Domestic Animals. 2007;42(S2):10-16. DOI: https://doi.org/10.1111/j.1439-0531.2007.00887.x

17. Zhang L., Wang L., Li Y., Li W., Yan H., Liu X., Zhao K., Wang L. A. substitution within erythropoietin receptor gene D1 domain associated with litter size in Beijing Black pig, Sus scrofa. Animal science journal. 2011;82(5):627-632. DOI: https://doi.org/10.1111/j.1740-0929.2011.00901.x

18. Obata F., Ozuru R., Tsuji T., Matsuba T., Fujii J. Stx2 Induces Differential Gene Expression and Disturbs Circadian Rhythm Genes in the Proximal Tubule. Toxins. 2022;14(2):69. DOI: https://doi.org/10.3390/toxins14020069

19. Mansego M. L., Milagro F. I., Zulet M. Á., Moreno-Aliaga M. J., Martínez J. A. Differential DNA methylation in relation to age and health risks of obesity. International journal of molecular sciences. 2015;16(8):16816-16832. DOI: https://doi.org/10.3390/ijms160816816

20. Chan Y. F., Jones F. C., McConnell E., Bryk J., Bünger L., Tautz D. Parallel selection mapping using artificially selected mice reveals body weight control loci. Current Biology. 2012;22(9):794-800. DOI: https://doi.org/10.1016/j.cub.2012.03.011

21. Bianchi E., Sun Y., Almansa-Ordonez A., Woods M., Goulding D., Martinez-Martin N., Wright G. J. Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit. Nature communications. 2021;12(1):1251. DOI: https://doi.org/10.1038/s41467-021-21512-w

22. Ling P., Lu T. J., Yuan C. J., Lai M. D. Biosignaling of mammalian Ste20-related kinases. Cellular signalling. 2008;20(7):1237-1247. DOI: https://doi.org/10.1016/j.cellsig.2007.12.019

23. Hsu H. P., Wang C. Y., Hsieh P. Y., Fang J. H., Chen Y. L. Knockdown of serine/threonine-protein kinase 24 promotes tumorigenesis and myeloid-derived suppressor cell expansion in an orthotopic immunocompetent gastric cancer animal model. Journal of Cancer. 2020;11(1):213-228. DOI: https://doi.org/10.7150/jca.35821


Review

For citations:


Romanets E.A., Romanets T.S., Tretyakova O.L., Getmantseva L.V. Search for genetic markers for selection and breeding aimed at increasing birth weight of piglets. Agricultural Science Euro-North-East. 2023;24(5):839-848. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.5.839-848

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)