Preview

Agricultural Science Euro-North-East

Advanced search

Bacterial community of agricultural soils used for potato cultivation in Sverdlovsk region

https://doi.org/10.30766/2072-9081.2023.24.6.989-998

Abstract

The yield of potatoes and other crops is influenced by many factors, one of the most important is the complex condition of the soil. Soil research more often focuses on the determination of its physical and chemical properties, but rarely takes into account the bacterial community and its diversity. In this work, the bacterial microbiota of soils cultivated with potato was evaluated. Using metabarcoding and full-fragment sequencing of the 16S rRNA site, by nanopore sequencing, primary screening of the bacterial community of fields in three administrative districts of the Sverdlovsk region: the city of Yekaterinburg, Beloyarsky and Sysertsky districts was carried out in 2022. As a result, 2371 operational taxonomic units (OTUs) were identified to the species level. More than half of the relative bacterial abundance is occupied by the phylum Proteobacteria. Three orders represent more than one-third of the total bacterial community: Burkholderiales, Hyphomicrobiales, and Acidobacteriales. The most common bacterial genera in cultivated agricultural soils of the Sverdlovsk region are Bradyrhizobium, Massilia, Gaiella, Sphingomonas, Lysobacter and Gemmatimonas. The obtained results of alpha- and beta-diversity analysis allow us to conclude that, despite the statistically significant difference in the number of detected OTUs between some fields, there is no difference in their diversity by study objects in the administrative districts of the Sverdlovsk region.

About the Authors

E. P. Shanina
Ural Federal Agrarian Scientific Research Centre, Ural Branch of the Russian Academy of Sciences
Russian Federation

Elena P. Shanina, DSc in Agricultural Science, chief researcher

21, Glavnaya St., Yekaterinburg, 620061



G. A. Lihodeevskiy
Ural Federal Agrarian Scientific Research Centre, Ural Branch of the Russian Academy of Sciences
Russian Federation

Georgiy A. Lihodeevskiy, junior researcher

21, Glavnaya St., Yekaterinburg, 620061



References

1. Young I. M., Crawford J. W. Interactions and self-organization in the soil-microbe complex. Science. 2004;304(5677):1634-1637. DOI: https://www.science.org/doi/10.1126/science.1097394

2. Roger-Estrade J., Christel A., Bertrand M., Richard G. Tillage and soil ecology: Partners for sustainable agriculture. Soil and Tillage Research. 2010;111(1):33-40. DOI: https://doi.org/10.1016/j.still.2010.08.010

3. Brussaard L., Ruiter P., Brown G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment. 2007;121(3):233-244. DOI: https://doi.org/10.1016/j.agee.2006.12.013

4. Zelles L. Fatty acids patterns of phospholipids and lipopolysacharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils. 1999;29:111-129. DOI: https://doi.org/10.1007/s003740050533

5. Zornoza R., Guerrero C., Mataix-Solera J., Scow K. M., Arcenegui V., Mataix-Beneyto J. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Appl Soil Ecol. 2009:42(3);315-323. DOI: https://doi.org/10.1016/j.apsoil.2009.05.011

6. Fürnkranz M., Lukesch B., Müller H., Huss H., Grube M., Berg G. Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology. 2012;63:418-428. DOI: https://doi.org/10.1007/s00248-011-9942-4

7. Glassner H., Zchori-Fein E., Compant S., Sessitsch A., Katzir N., Portnoy V., Yaron S. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiology Ecology. 2015;91(7):fiv074. DOI: https://doi.org/10.1093/femsec/fiv074

8. Kõiv V., Roosaare M., Vedler E., Ann Kivistik P., Toppi K., Schryer D. W., Remm M., Tenson T., Mäe A. Microbial population dynamics in response to Pectobacteriumatrosepticum infection in potato tubers. SciRep. 2015;5:11606. DOI: https://doi.org/10.1038/srep11606

9. EFSA Panel on Plant Protection Products and their Residues (PPR), Ockleford C., Adriaanse P., Berny P., Brock T., Duquesne S., Grilli S., Hernandez-Jerez A. F., Bennekou S. H., Klein M., Kuhl M., Laskowski R., Machera K., Pelkonen O., Pieper S., Stemmer M., Sundh I., Teodorovic I., Tiktak A., Topping C. J., Wolterink G., Craig P., de Jong F., Manachini B., Sousa P., Swarowsky K., Auteri D., Arena M., Rob S. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal. 2017;15(2):e04690. DOI: https://doi.org/10.2903/j.efsa.2017.4690

10. Inceoglu Ö., van Overbeek L. S., Falcão Salles J., van Elsas J. D. Normal operating range of bacterial communities in soil used for potato cropping. Applied and Environmental Microbiology. 2013;79(4):1160-1170. DOI: https://doi.org/10.1128/AEM.02811-12

11. Gu S., Xiong X., Tan L., Deng Y., Du X., Yang X., Hu Q. Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Front Plant Sci. 2022;13:1000045. DOI: https://doi.org/10.3389/fpls.2022.1000045

12. Buchholz F., Antonielli L., Kostić T., Sessitsch A., Mitter B. The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS One. 2019;14(11):e0223691. DOI: https://doi.org/10.1371/journal.pone.0223691

13. Kracmarova M., Karpiskova J., Uhlik O., Strejcek M., Szakova J., Balik J., Demnerova K., Stiborova H. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization. Microorganisms. 2020;8(9):1377. DOI: https://doi.org/10.3390/microorganisms8091377

14. Qin S., Yeboah S., Xu X., Liu Y., Yu B. Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Frontiers in Microbiology. 2017;(8):845. DOI: https://doi.org/10.3389/fmicb.2017.00845

15. Linz A. M., Crary B. C., Shade A., Owens S., Gilbert J. A., Knight R., McMahon K. D. Bacterial community composition and dynamics spanning five years in freshwater bog lakes. ASM Journals. MSphere. 2017;2(3):e00169. DOI: https://doi.org/doi:10.1128/mSphere.00169-17

16. McMurdie P. J., Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. DOI: https://doi.org/10.1371/journal.pone.0061217

17. Shin J., Lee S., Go M. J., Lee S. Y., Kim S. C., Lee C. H., Cho B. K. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports. 2016;6:29681. DOI: https://doi.org/10.1038/srep29681

18. Johnson J. S., Spakowicz D. J., Hong B. Y., Petersen L. M., Demkowicz P., Chen L., Leopold S. R., Hanson B. M., Agresta H. O., Gerstein M., Sodergren E., Weinstock G. M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications. 2019;10(1):5029. DOI: https://doi.org/10.1038/s41467-019-13036-1

19. Penton C. R., Gupta V. V., Yu J., Tiedje J. M. Size matters: assessing optimum soil sample size for fungal and bacterial community structure analyses using high throughput sequencing of rRNA gene amplicons. Frontirs in Microbiology. 2016;7:824. DOI: https://doi.org/10.3389/fmicb.2016.00824

20. Morita H., Akao S. The effect of soil sample size, for practical DNA extraction, on soil microbial diversity in different taxonomic ranks. PLoS One. 2021;16(11):e0260121. DOI: https://doi.org/10.1371/journal.pone.0260121

21. Větrovský T., Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8(2):e57923. DOI: https://doi.org/10.1371/journal.pone.0057923

22. Louca S., Doebeli M., Parfrey L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 2018;6:41. DOI: https://doi.org/10.1186/s40168-018-0420-9

23. Klappenbach J. A., Saxman P. R., Cole J. R., Schmidt T. M. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Research. 2001;29(1):181-184. DOI: https://doi.org/10.1093/nar/29.1.181

24. Starke R., Pylro V. S., Morais D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microbial Ecology. 2021;81:535-539. DOI: https://doi.org/10.1007/s00248-020-01586-7

25. Gao Y., Wu M. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses. ISME Communications. 2023;3(1):59. DOI: https://doi.org/10.1038/s43705-023-00266-0

26. Charkowski A., Sharma K., Parker M. L., Secor G. A., Elphinstone J. Bacterial diseases of potato. In: Campos H., Ortiz O. (eds) The Potato Crop. Springer, Cham. 2020. pp. 351-388. DOI: https://doi.org/10.1007/978-3-030-28683-5_10

27. Voronina O. L., Kunda M. S., Ryzhova N. N., Aksenova E. I., Semenov A. N., Lasareva A. V., Amelina E. L., Chuchalin A. G., Lunin V. G., Gintsburg A. L. The variability of the order Burkholderiales representatives in the healthcare units. BioMed Research International. 2015;2015:680210. DOI: https://doi.org/10.1155/2015/680210

28. Volpiano C. G., Sant'Anna F. H., Ambrosini A., de São José J. F. B., Beneduzi A., Whitman W. B., de Souza E. M., Lisboa B. B., Vargas L. K., Passaglia L. M. P. Genomic metrics applied to Rhizobiales (Hyphomicrobiales): species reclassification, identification of unauthentic genomes and false type strains. Frontiers in Microbiology. 2021;12:614957. DOI: https://doi.org/10.3389/fmicb.2021.614957

29. Quaiser A., Ochsenreiter T., Lanz C., Schuster S. C., Treusch A. H., Eck J., Schleper C. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Molecular Microbiology. 2003;50(2):563-575. DOI: https://doi.org/10.1046/j.1365-2958.2003.03707.x

30. Tian B., Yang J., Zhang K. Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology. 2007;61(2):197-213. DOI: https://doi.org/10.1111/j.1574-6941.2007.00349.x

31. Postma J., Schilder M. T., Bloem J., Van Leeuwen-Haagsma W. K. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry, 2008;40(9):2394-2406. DOI: https://doi.org/10.1016/j.soilbio.2008.05.023

32. Duran D., Rey L., Navarro A., Busquets A., Imperial J., Ruiz-Argüeso T. Bradyrhizobiumvalentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Systematic and Applied Microbiology. 2014;37(5):336-341. DOI: https://doi.org/10.1016/j.syapm.2014.05.002

33. Helene L. C. F., Delamuta J. R. M., Ribeiro R. A., Hungria M. Bradyrhizobiummercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Degueliacostata (syn. Lonchocarpuscostatus). International Journal of Systematic and Evolutionary Microbiology. 2017;67(6):1827-1834. DOI: https://doi.org/10.1099/ijsem.0.001870

34. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International Journal of Systematic and Evolutionary Microbiology. 2003;53(4):1155-1163. DOI: https://doi.org/10.1099/ijs.0.02520-0

35. Ofek M., Hadar Y., Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One. 2012;7(7):e40117. DOI: https://doi.org/10.1371/journal.pone.0040117

36. Macchi M., Martinez M., NemeTauil R. M., Valacco M. P., Morelli I. S., Coppotell B. M. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World Journal of Microbiology and Biotechnology. 2017;34(1):7. DOI: https://doi.org/10.1007/s11274-017-2391-6

37. Li R., Dörfler U., Munch J. C., Schroll R. Enhanced degradation of isoproturon in an agricultural soil by a Sphingomonas sp. strain and a microbial consortium. Chemosphere. 2017;168:1169-1176. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.084

38. Mazoyon C., Hirel B., Pecourt A., Catterou M., Gutierrez L., Sarazin V., Dubois F., Duclercq J. Sphingomonasse diminicola is an end osymbiotic bacterium able to induce the formation of root nodules in pea (Pisum sativum L.) And to enhance plant biomass production. Microorganisms. 2023;11(1):199. DOI: https://doi.org/10.3390/microorganisms11010199

39. Ahn J. H., Lee S. A., Kim J. M., Kim M. S., Song J., Weon H. Y. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. Journal of Microbiology. 2016;54(11):724-731. DOI: https://doi.org/10.1007/s12275-016-6463-3

40. Cordero J., de Freitas J. R., Germida J. J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Canadian Journal of Microbiology. 2020;66(1):71-85. DOI: https://doi.org/10.1139/cjm-2019-0330

41. Kim H., Park Y. H., Yang J. E., Kim H. S., Kim S. C., Oh E. J., Moon J., Cho W., Shin W., Yu C. Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health. Toxics. 2022;10(3):117. DOI: https://doi.org/10.3390/toxics10030117


Review

For citations:


Shanina E.P., Lihodeevskiy G.A. Bacterial community of agricultural soils used for potato cultivation in Sverdlovsk region. Agricultural Science Euro-North-East. 2023;24(6):989-998. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.6.989-998

Views: 323


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)