Preview

Agricultural Science Euro-North-East

Advanced search

Low-temperature exposure in early embryogenesis as a way of increasing the resistance of chicks to infectious diseases

https://doi.org/10.30766/2072-9081.2023.24.6.1029-1037

Abstract

The article is devoted to the problem of increasing the resistance of chicks from hatching to the age of 3 weeks to infectious diseases by technological methods. Dosed low-temperature exposure to the embryo during the sensitive period of early embryogenesis was proposed as an impact factor; influenza vaccine virus was used as a test virus for experimental infection of embryos. It was found that in the embryos after cooling, the titer of the virus was significantly lower by 1.5-12.0 times (p<0.001) compared with the control. This fact indicates a decrease in the replicative activity of viral strains in embryos of this group. In chicken embryos of Russian Snow-White breed after cooling, there was a decrease in the infectious activity of the influenza A virus by 11.5 %, as well as a decrease in the infectious activity of the infectious bronchitis virus by 3.6-6.9 %, depending on the breed of the embryos. The level of chick resistance in the experimental group to diseases of bacterial etiology was also higher, as evidenced by the higher safety of 3-week-old chicks (0.8-1.1 % higher than in the control) and a higher bursa index in 12-day-old chicks (8.5-9.0 % higher than in the control). The hatchability of eggs of the experimental group was also 4.5 % higher than in the control. The effects obtained as a result of hypothermic exposure during this sensitive period of embryogenesis can be explained by inducing the production of heat and cold shock proteins by the embryo, which, in turn, activate innate antiviral reactions caused by major histocompatibility complex. However, this issue requires additional study with the involvement of molecular genetics methods, since the supposed mechanisms that cause an increase in resistance in response to low-temperature exposure in early ontogenesis need to be confirmed.

About the Authors

E. S. Fedorova
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Elena S. Fedorova, PhD in Biology, senior researcher, the Department of genetics, breeding and conservation of genetic resources of farm birds

Moscow Shosse, 55a, Pushkin, St. Petersburg, 196601



O. I. Stanishevskaya
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Olga I. Stanishevskaya, DSc in Biology, Head of the Department of genetics, breeding and conservation of genetic resources of farm birds

Moscow Shosse, 55a, Pushkin, St. Petersburg, 196601



References

1. Somes R. G. International Registry of Poultry Genetic Stocks. The University of Connecticut Storrs, 1988. 98 p. URL: http://digitalcommons.uconn.edu/saes/29

2. Gul H., Habib G., Khan I. M., Rahman S. U., Khan N. M., Wang H., Khan N. U., Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Frontiers in Veterinary Science. 2022;9:1032983. DOI: https://doi.org/10.3389/fvets.2022.1032983

3. Kheimar A., Klinger R., Bertzbach L. D., Sid H., Yu Y., Conradie A. M., Schade B., Böhm B., Preisinger R., Nair V., Kaufer B. B., Schusser B. A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms. 2021;9(5):1066. DOI: https://doi.org/10.3390/microorganisms9051066

4. Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., Hejnar J. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(4):2108-2112. DOI: https://doi.org/10.1073/pnas.1913827117

5. Challagulla A., Jenkins K. A., O'Neil T. E., Shi S., Morris K. R., Wise T. G., Paradkar P. N., Tizard M. L., Doran T. J., Schat K. A. In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms. 2021;9(1):164. DOI: https://doi.org/10.3390/microorganisms9010164

6. McGrew M. J., Sherman A., Ellard F. M., Lillico S. G., Gilhooley H. J., Kingsman A. J., Mitrophanous K. A., Sang H. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports. 2004;5(7):728-733. DOI: https://doi.org/10.1038/sj.embor.7400171

7. Barjesteh N., O'Dowd K., Vahedi S. M. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine. 2020;127:154961. DOI: https://doi.org/10.1016/j.cyto.2019.154961

8. Schilling M. A., Katani R., Memari S., Cavanaugh M., Buza J., Radzio-Basu J., Mpenda F. N., Deist M. S., Lamont S. J., Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Frontiers in Genetics. 2018;9:61. DOI: https://doi.org/10.3389/fgene.2018.00061

9. Kaufman J., Salomonsen J. The "minimal essential ГКГ" revisited: both peptide-binding and cell surface expression level of ГКГ molecules are polymorphisms selected by pathogens in chickens. Hereditas. 1997;127(1-2):67-73. DOI: https://doi.org/10.1111/j.1601-5223.1997.t01-1-00067.x

10. Torigoe T., Tamura Y., Sato N. Heat shock proteins and immunity: application of hyperthermia for immunomodulation. International Journal of Hyperthermia. 2009;25(8):610-616. DOI: https://doi.org/10.3109/02656730903315831

11. Stewart G. R., Young D. B. Heat-shock proteins and the host-pathogen interaction during bacterial infection. Current Opinion in Immunology. 2004;16(4):506-510. DOI: https://doi.org/10.1016/j.coi.2004.05.007

12. Zhao F. Q., Zhang Z. W., Qu J. P., Yao H. D., Li M., Li S., Xu S. W. Cold stress induces antioxidants and HSPs in chicken immune organs. Cell Stress and Chaperones. 2014;19(5):635-648. DOI: https://doi.org/10.1007/s12192-013-0489-9

13. Станишевская О. И., Федорова Е. С. Сравнительная оценка особенностей стресс-реактивности организма кур русской белой породы с мутацией sw+ и амрокс на условия гипотермии в эмбриональном и раннем постнатальном периодах онтогенеза. Сельскохозяйственная биология. 2019;54(6):1135-1143. DOI: https://doi.org/10.15389/agrobiology.2019.6.1135rus EDN: JIVYWR

14. Stanishevskaya O. I., Fedorova E. S. Comparative evaluation of the peculiarities of stress reactivity of the Russian white breed chicken with sw+ mutation and Amrox in hypothermia conditions during embryonal and early postnatal periods of ontogenesis. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2019;54(6):1135-1143. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2019.6.1135rus

15. De Maio A., Vazquez D. Extracellular heat shock proteins: a new location, a new function. Shock. 2013;40(4):239-246. DOI: https://doi.org/10.1097/SHK.0b013e3182a185ab

16. Habich C., Burkart V. Heat shock protein 60: regulatory role on innate immune cells. Cellular and Molecular Life Sciences. 2007;64(6):742-751. DOI: https://doi.org/10.1007/s00018-007-6413-7


Review

For citations:


Fedorova E.S., Stanishevskaya O.I. Low-temperature exposure in early embryogenesis as a way of increasing the resistance of chicks to infectious diseases. Agricultural Science Euro-North-East. 2023;24(6):1029-1037. (In Russ.) https://doi.org/10.30766/2072-9081.2023.24.6.1029-1037

Views: 266


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)