Бактериальная микробиота желудочно-кишечного тракта крупного рогатого скота молочного направления: состав, функции, значение (обзор)
https://doi.org/10.30766/2072-9081.2024.25.2.159-171
Аннотация
В обзоре представлен обобщенный материал экспериментальных исследований и обзорных работ (114 источников, в т. ч. 110 зарубежных) по изучению состава бактериальной микробиоты желудочно-кишечного тракта у крупного рогатого скота в зависимости от возраста, клинического состояния животных и уровня продуктивности, показано влияние функциональной активности микробиоты на формирование и развитие организма. Микробиота оказывает влияние на здоровье и продуктивные качества крупного рогатого скота. Наиболее важную роль играет бактериальное сообщество желудочно-кишечного тракта как элемент пищеварительной системы. Эта сложная система с обратной связью, где, с одной стороны, на микробиоту влияет генотип хозяина, кормовая база, условия содержания, тип выращивания, применяемые лекарственные препараты и т. д., а с другой – микробиота главным образом влияет на пластический и энергетический обмен, но также опосредованно затрагивает респираторную, выделительную, центральную нервную и иммунную системы организма. Бактериальное разнообразие закладывается ещё во внутриутробном периоде развития организма, претерпевает существенные изменения по мере взросления телёнка и остаётся лабильным на протяжении всей жизни, приспосабливаясь к изменяющимся условиям. Современные исследования заболеваний пищеварительной системы всё больше обращают внимание на состав микробного сообщества, указывая на опасность применения антибиотиков и необходимость перехода на пробиотическую и пребиотическую терапию. Продуктивные качества коров, например: удой, выход молочного жира и белка также зависят от состава микробиоты.
Об авторах
Г. А. ЛиходеевскийРоссия
Лиходеевский Георгий Александрович, аспирант, младший научный сотрудник лаборатории молекулярных и биологических исследований
ул. Карла Либкнехта, д. 42, г. Екатеринбург, 620075
П. С. Богатова
Россия
Богатова Полина Сергеевна, аспирант, младший научный сотрудник лаборатории молекулярных и биологических исследований
ул. Карла Либкнехта, д. 42, г. Екатеринбург, 620075
О. Е. Лиходеевская
Россия
Лиходеевская Оксана Евгеньевна, кандидат биол. наук, доцент, зав. лабораторией молекулярных и биологических исследований
ул. Карла Либкнехта, д. 42, г. Екатеринбург, 620075
Список литературы
1. Friedman E. S., Bittinger K., Esipova T. V., Hou L., Chau L., Jiang J., Mesaros C., Lund P. J., Liang X., FitzGerald G. A., Goulian M., Lee D., Garcia B. A., Blair I. A., Vinogradov S. A., Wu G. D. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(16):4170–4175. DOI: https://doi.org/10.1073/pnas.1718635115
2. Barone M., D'Amico F., Brigidi P., Turroni S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors. 2022;48(2):307–314. DOI: https://doi.org/10.1002/biof.1835
3. Procházková N., Falony G., Dragsted L. O., Licht T. R., Raes J., Roager H. M. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180–191. DOI: https://doi.org/10.1136/gutjnl-2022-328166
4. Müller M., Hermes G. D. A., Canfora E. E., Smidt H., Masclee A. A. M., Zoetendal E. G., Blaak E. E. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. American Journal Physiol Gastrointest Liver Physiol. 2020;318(2):G361–G369. DOI: https://doi.org/10.1152/ajpgi.00283.2019
5. Ridlon J. M., Kang D. J., Hylemon P. B., Bajaj J. S. Bile acids and the gut microbiome. Current Opinion in Gastroenterology. 2014;30(3):332–338. DOI: https://doi.org/10.1097/MOG.0000000000000057
6. Paone P., Cani P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–2243. DOI: https://doi.org/10.1136/gutjnl-2020-322260
7. Wu H. J., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. DOI: https://doi.org/10.4161/gmic.19320
8. Cammack K. M., Austin K. J., Lamberson W. R., Conant G. C., Cunningham H. C. RUMINANT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science. 2018;96(2):752–770. DOI: https://doi.org/10.1093/jas/skx053
9. O'Hara E., Neves A. L. A., Song Y., Guan L. L. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annuals Reviews of Animal Biosciences. 2020;(8):199–220. DOI: https://doi.org/10.1146/annurev-animal-021419-083952
10. Чеченихина О. С., Мустафина А. А. Современные специализированные породы и типы молочного скота. Аграрное образование и наука. 2023;(1):7.Режим доступа: https://www.elibrary.ru/item.asp?id=50370130 EDN: GZGLFZ
11. Mao S., Zhang M., Liu J., Zhu W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Scientific Reports. 2015;(5):16116. DOI: https://doi.org/10.1038/srep16116
12. Lin L., Lai Z., Zhang J., Zhu W., Mao S. The gastrointestinal microbiome in dairy cattle is constrained by the deterministic driver of the region and the modified effect of diet. Microbiome. 2023;11(1):10. DOI: https://doi.org/10.1186/s40168-022-01453-2
13. Petri R. M., Schwaiger T., Penner G. B., Beauchemin K. A., Forster R. J., McKinnon J. J., McAllister T. A. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One. 2013;8(12):e83424. DOI: https://doi.org/10.1371/journal.pone.0083424
14. Tropini C., Earle K. A., Huang K. C., Sonnenburg J. L. The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host Microbe. 2017;21(4):433–442. DOI: https://doi.org/10.1016/j.chom.2017.03.010
15. Gu S., Chen D., Zhang J. N., Lv X., Wang K., Duan L. P., Nie Y., Wu X. L. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One. 2013;8(10):e74957. DOI: https://doi.org/10.1371/journal.pone.0074957
16. Seedorf H., Griffin N. W., Ridaura V. K., Reyes A., Cheng J., Rey F. E., Smith M. I., Simon G. M., Scheffrahn R. H., Woebken D., Spormann A. M., Van Treuren W., Ursell L. K., Pirrung M., Robbins-Pianka A., Cantarel B. L., Lombard V., Henrissat B., Knight R., Gordon J. I. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159(2):253–266. DOI: https://doi.org/10.1016/j.cell.2014.09.008
17. Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L., Clemente J. C., Knight R., Heath A. C., Leibel R. L., Rosenbaum M., Gordon J. I. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. DOI: https://doi.org/10.1126/science.1237439
18. Kim M., Morrison M., Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology. 2011;76(1):49–63. DOI: https://doi.org/10.1111/j.1574-6941.2010.01029.x
19. Myer P. R., Freetly H. C., Wells J. E., Smith T. P. L., Kuehn L. A. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. Journal of Animal Science. 2017;95(7):3215–3224. DOI: https://doi.org/10.2527/jas.2016.1059
20. Liu J. H., Zhang M. L., Zhang R. Y., Zhu W. Y., Mao S. Y. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microbioal Biotechnology. 2016;9(2):257–268. DOI: https://doi.org/10.1111/1751-7915.12345
21. Huang S., Ji S., Yan H., Hao Y., Zhang J., Wang Y., Cao Z., Li S. The day-to-day stability of the ruminal and fecal microbiota in lactating dairy cows. MicrobiologyOpen. 2020;9(5):e990. DOI: https://doi.org/10.1002/mbo3.990
22. Myer P. R., Wells J. E., Smith T. P., Kuehn L. A., Freetly H. C. Microbial community profiles of the colon from steers differing in feed efficiency. SpringerPlus. 2015;4:454. DOI: https://doi.org/10.1186/s40064-015-1201-6
23. Stevenson D. M., Weimer P. J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology. 2007;75(1):165–174. DOI: https://doi.org/10.1007/s00253-006-0802-y
24. Flint H. J., Bayer E. A. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Annals of the New York Academy of Sciences. 2008;1125(1):280–288. DOI: https://doi.org/10.1196/annals.1419.022
25. Dodd D., Mackie R. I., Cann I. K. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Molecular Microbiology. 2011;79(2):292–304. DOI: https://doi.org/10.1111/j.1365-2958.2010.07473.x
26. Dill-McFarland K. A., Breaker J. D., Suen G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Scientific Reports. 2017;7:40864. DOI: https://doi.org/10.1038/srep40864
27. Calsamiglia S., Ferret A., Reynolds C. K., Kristensen N. B., van Vuuren A. M. Strategies for optimizing nitrogen use by ruminants. Animal. 2010;4(7):1184–1196. DOI: https://doi.org/10.1017/S1751731110000911
28. Klein-Jöbstl D., Schornsteiner E., Mann E., Wagner M., Drillich M., Schmitz-Esser S. Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Frontiers in Microbiology. 2014;5:622. DOI: https://doi.org/10.3389/fmicb.2014.00622
29. Belanche A., Doreau M., Edwards J. E., Moorby J. M., Pinloche E., Newbold C. J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. The Journal of Nutrition. 2012;142(9):1684–1692. DOI: https://doi.org/10.3945/jn.112.159574
30. Holman D. B., Gzyl K. E. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiology Ecology. 2019;95(6):fiz072. DOI: https://doi.org/10.1093/femsec/fiz072
31. Purushe J., Fouts D. E., Morrison M., White B. A., Mackie R. I., the North American Consortium for Rumen Bacteria, Coutinho P. M., Henrissat B., Nelson K. E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microbial Ecology. 2010;60(4):721–729. DOI: https://doi.org/10.1007/s00248-010-9692-8
32. Accetto T., Avguštin G. The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? Systematic and Applied Microbiology. 2019;42(2):107–116. DOI: https://doi.org/10.1016/j.syapm.2018.10.001
33. Tett A., Pasolli E., Masetti G., Ercolini D., Segata N. Prevotella diversity, niches and interactions with the human host. Nature Reviews Microbiology. 2021;19(9):585–599. DOI: https://doi.org/10.1038/s41579-021-00559-y
34. Flint H. J., Bayer E. A., Rincon M. T., Lamed R., White B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology. 2008;6(2):121–131. DOI: https://doi.org/10.1038/nrmicro1817
35. Marteyn B., West N. P., Browning D. F., Cole J. A., Shaw J. G., Palm F., Mounier J., Prévost M. C., Sansonetti P., Tang C. M. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010;465(7296):355–358. DOI: https://doi.org/10.1038/nature08970
36. Martinez-Guryn K., Leone V., Chang E. B. Regional diversity of the gastrointestinal microbiome. Cell Host & Microbe. 2019;26(3):314–324. DOI: https://doi.org/10.1016/j.chom.2019.08.011
37. Arrieta M. C., Stiemsma L. T., Amenyogbe N., Brown E. M., Finlay B. The intestinal microbiome in early life: health and disease. Frontiers in Immunology. 2014;5:427. DOI: https://doi.org/10.3389/fimmu.2014.00427
38. Petersen C., Bell R., Klag K. A., Lee S. H., Soto R., Ghazaryan A., Buhrke K., Ekiz H. A., Ost K. S., Boudina S., O'Connell R. M., Cox J. E., Villanueva C. J., Stephens W. Z., Round J. L. T cell-mediated regulation of the microbiota protects against obesity. Science. 2019;365(6451):9351. DOI: https://doi.org/10.1126/science.aat9351
39. Du Y., Gao Y., Hu M., Hou J., Yang L., Wang X., Du W., Liu J., Xu Q. Colonization and development of the gut microbiome in calves. Journal of Animal Science and Biotechnology. 2023;14(1):46. DOI: https://doi.org/10.1186/s40104-023-00856-x
40. Gritz E. C., Bhandari V. The human neonatal gut microbiome: a brief review. Frontiers in Pediatrics. 2015;3:17. DOI: https://doi.org/10.3389/fped.2015.00017
41. Maradiaga N., Aldridge B., Zeineldin M., Lowe J. Gastrointestinal microbiota and mucosal immune gene expression in neonatal pigs reared in a cross-fostering model. Microbial Pathogenesis. 2018;121:27–39. DOI: https://doi.org/10.1016/j.micpath.2018.05.007
42. Mulder I. E., Schmidt B., Lewis M., Delday M., Stokes C. R., Bailey M., Aminov R. I., Gill B. P., Pluske J. R., Mayer C. D., Kelly D. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One. 2011;6(12):e28279. DOI: https://doi.org/10.1371/journal.pone.0028279
43. Malmuthuge N., Guan L. L. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. Journal of Dairy Science. 2017;100(7):5996–6005. DOI: https://doi.org/10.3168/jds.2016-12239
44. Beaver A., Petersen C., Weary D. M., Finlay B. B., von Keyserlingk M. A. G. Differences in the fecal microbiota of dairy calves reared with differing sources of milk and levels of maternal contact. JDS Communications. 2021;2(4):200–206. DOI: https://doi.org/10.3168/jdsc.2020-0059
45. Cho Y. I., Yoon K. J. An overview of calf diarrhea – infectious etiology, diagnosis, and intervention. Journal of Veterinary Science. 2014;15(1):1–17. DOI: https://doi.org/10.4142/jvs.2014.15.1.1
46. Oikonomou G., Teixeira A. G., Foditsch C., Bicalho M. L., Machado V. S., Bicalho R. C. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 2013;8(4):e63157. DOI: https://doi.org/10.1371/journal.pone.0063157
47. Li R. W., Connor E. E., Li C., Baldwin Vi R. L., Sparks M. E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environmental Microbiology. 2012;14(1):129–139. DOI: https://doi.org/10.1111/j.1462-2920.2011.02543.x
48. Jami E., Israel A., Kotser A., Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. The ISME Journal. 2013;7(6):1069–1079. DOI: https://doi.org/10.1038/ismej.2013.2
49. Liang Z., Zhang J., Du M., Ahmad A. A., Wang S., Zheng J., Salekdeh G. H., Yan P., Han J., Tong B., Ding X. Age-dependent changes of hindgut microbiota succession and metabolic function of Mongolian cattle in the semi-arid rangelands. Front Microbiol. 2022;13:957341. DOI: https://doi.org/10.3389/fmicb.2022.957341
50. Li S., Khafipour E., Krause D. O., Kroeker A., Rodriguez-Lecompte J. C., Gozho G. N., Plaizier J. C. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. Journal of Dairy Science. 2012;95(1):294–303. DOI: https://doi.org/10.3168/jds.2011-4447
51. Zou X., Liu G., Meng F., Hong L., Li Y., Lian Z., Yang Z., Luo C., Liu D. Exploring the rumen and cecum microbial community from fetus to adulthood in goat. Animals (Basel). 2020;10(9):1639. DOI: https://doi.org/10.3390/ani10091639
52. Hu P., Zhao F., Wang J., Zhu W. Early-life lactoferrin intervention modulates the colonic microbiota, colonic microbial metabolites and intestinal function in suckling piglets. Applied Microbiology and Biotechnology. 2020;104(14):6185–6197. DOI: https://doi.org/10.1007/s00253-020-10675-z
53. Даугалиева А. Т., Даугалиева С. Т., Кинеев М. А., Арынгазиев Б. С., Сембаева А. И., Лаврентьева Т. А. Сравнительная характеристика кишечного микробиома местного крупного рогатого скота и скота абердин-ангусской породы, импортированного в Казахстан. Ветеринария сегодня. 2022;11(1):53–60. DOI: https://doi.org/10.29326/2304-196X-2022-11-1-53-60 EDN: NTTNMY
54. Wang L., Wu D., Zhang Y., Li K., Wang M., Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Frontiers in Microbiology. 2023;14:1113730. DOI: https://doi.org/10.3389/fmicb.2023.1113730
55. Guzman C. E., Wood J. L., Egidi E., White-Monsant A. C., Semenec L., Grommen S. V. H., Hill-Yardin E. L., De Groef B., Franks A. E. A pioneer calf foetus microbiome. Scientific Reports. 2020;10(1):17712. DOI: https://doi.org/10.1038/s41598-020-74677-7
56. Difford G. F., Plichta D. R., Løvendahl P., Lassen J., Noel S. J., Højberg O., Wright A. G., Zhu Z., Kristensen L., Nielsen H. B., Guldbrandtsen B., Sahana G. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genetics. 2018;14(10):e1007580. DOI: https://doi.org/10.1371/journal.pgen.1007580
57. Abbas W., Howard J. T., Paz H. A., Hales K. E., Wells J. E., Kuehn L. A., Erickson G. E., Spangler M. L., Fernando S. C. Influence of host genetics in shaping the rumen bacterial community in beef cattle. Scientific Reports. 2020;10(1):15101. DOI: https://doi.org/10.1038/s41598-020-72011-9
58. Sasson G., Kruger Ben-Shabat S., Seroussi E., Doron-Faigenboim A., Shterzer N., Yaacoby S., Berg Miller M. E., White B. A., Halperin E., Mizrahi I. Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow's capacity to harvest energy from its feed. mBio. 2017;8(4):e00703-17. DOI: https://doi.org/10.1128/mBio.00703-17
59. Zhang Q., Difford G., Sahana G., Løvendahl P., Lassen J., Lund M. S., Guldbrandtsen B., Janss L. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. The ISME Journal. 2020;14(8):2019–2033. DOI: https://doi.org/10.1038/s41396-020-0663-x
60. Wallace R. J., Sasson G., Garnsworthy P. C., Tapio I., Gregson E., Bani P., Huhtanen P., Bayat A. R., Strozzi F., Biscarini F., Snelling T. J., Saunders N., Potterton S. L., Craigon J., Minuti A., Trevisi E., Callegari M. L., Cappelli F. P., Cabezas-Garcia E. H., Vilkki J., Pinares-Patino C., Fliegerová K. O., Mrázek J., Sechovcová H., Kopečný J., Bonin A., Boyer F., Taberlet P., Kokou F., Halperin E., Williams J. L., Shingfield K. J., Mizrahi I. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances. 2019;5(7):aav8391. DOI: https://doi.org/10.1126/sciadv.aav8391
61. Fan P., Bian B., Teng L., Nelson C. D., Driver J., Elzo M. A., Jeong K. C. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. The ISME Jornal. 2020;14(1):302–317. DOI: https://doi.org/10.1038/s41396-019-0529-2
62. Pelaseyed T., Bergström J. H., Gustafsson J. K., Ermund A., Birchenough G. M., Schütte A., van der Post S., Svensson F., Rodríguez-Piñeiro A. M., Nyström E. E., Wising C., Johansson M. E., Hansson G. C. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews. 2014;260(1):8–20. DOI: https://doi.org/10.1111/imr.12182
63. Desai M. S., Seekatz A. M., Koropatkin N. M., Kamada N., Hickey C. A., Wolter M., Pudlo N. A., Kitamoto S., Terrapon N., Muller A., Young V. B., Henrissat B., Wilmes P., Stappenbeck T. S., Núñez G., Martens E. C. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21. DOI: https://doi.org/10.1016/j.cell.2016.10.043
64. Miko E., Csaszar A., Bodis J., Kovacs K. The maternal-fetal gut microbiota axis: physiological changes, dietary influence, and modulation possibilities. Life (Basel). 2022;12(3):424. DOI: https://doi.org/10.3390/life12030424
65. Luecke S. M., Holman D. B., Schmidt K. N., Gzyl K. E., Hurlbert J. L., Menezes A. C. B., Bochantin K. A., Kirsch J. D., Baumgaertner F., Sedivec K. K., Swanson K. C., Dahlen C. R., Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Frontiers in Microbiology. 2023;14:1207601. DOI: https://doi.org/10.3389/fmicb.2023.1207601
66. Constable P. D. Antimicrobial use in the treatment of calf diarrhea. Journal of Veterinary Internal Medicine. 2004;18(1):8–17. DOI: https://doi.org/10.1892/0891-6640(2004)182.0.co;2
67. Smith G. Antimicrobial decision making for enteric diseases of cattle. Veterinary Clinics of North America: Food Animal Practice. 2015;31(1):47–60. DOI: https://doi.org/10.1016/j.cvfa.2014.11.004
68. Khachatryan A. R., Hancock D. D., Besser T. E., Call D. R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Applied and Environmental Microbiology. 2004;70(2):752–757. DOI: https://doi.org/10.1128/AEM.70.2.752-757.2004
69. Thames C. H., Pruden A., James R. E., Ray P. P., Knowlton K. F. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics. Frontiers in Microbiology. 2012;3:139. DOI: https://doi.org/10.3389/fmicb.2012.00139
70. Maynou G., Migura-Garcia L., Subirats J., Chester-Jones H., Ziegler D., Bach A., Terré M. 1232 Impact of milk-feeding programs on fecal bacteria population and antimicrobial resistance genes in Escherichia coli isolated from feces in preweaned calves. Journal of Animal Science. 2016;94(5):593. DOI: https://doi.org/10.2527/jam2016-1232
71. Maynou G., Bach A., Terré M. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs. Journal of Dairy Science. 2017;100(4):2682–2694. DOI: https://doi.org/10.3168/jds.2016-11891
72. Firth C. L. L., Kremer K., Werner T., Käsbohrer A. The effects of feeding waste milk containing antimicrobial residues on dairy calf health. Pathogens. 2021;10(2):112. DOI: https://doi.org/10.3390/pathogens10020112
73. Xie G., Duff G. C., Hall L. W., Allen J. D., Burrows C. D., Bernal-Rigoli J. C., Dowd S. E., Guerriero V., Yeoman C. J. Alteration of digestive tract microbiome in neonatal Holstein bull calves by bacitracin methylene disalicylate treatment and scours. Journal of Animal Science. 2013;91(10):4984–4990. DOI: https://doi.org/10.2527/jas.2013-6304
74. Oultram J., Phipps E., Teixeira A. G., Foditsch C., Bicalho M. L., Machado V. S., Bicalho R. C., Oikonomou G. Effects of antibiotics (oxytetracycline, florfenicol or tulathromycin) on neonatal calves' faecal microbial diversity. VetRecord. 2015;177(23):598. DOI: https://doi.org/10.1136/vr.103320
75. Pereira R. V. V., Lima S., Siler J. D., Foditsch C., Warnick L. D., Bicalho R. C. Ingestion of milk containing very low concentration of antimicrobials: longitudinal effect on fecal microbiota composition in preweaned calves. PLoS One. 2016;11(1):e0147525. DOI: https://doi.org/10.1371/journal.pone.0147525
76. Pereira R. V. V., Carroll L. M., Lima S., Foditsch C., Siler J. D., Bicalho R. C., Warnick L. D. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Scientific Reports. 2018;8(1):554. DOI: https://doi.org/10.1038/s41598-017-19021-2
77. Gulliksen S. M., Jor E., Lie K. I., Hamnes I. S., Løken T., Akerstedt J., Osterås O. Enteropathogens and risk factors for diarrhea in Norwegian dairy calves. Journal of Dairy Science. 2009;92(10):5057–5066. DOI: https://doi.org/10.3168/jds.2009-2080
78. Ma T., Villot C., Renaud D., Skidmore A., Chevaux E., Steele M., Guan L. L. Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: prediction of diarrhea. The ISME Journal. 2020;14(9):2223–2235. DOI: https://doi.org/10.1038/s41396-020-0678-3
79. Du W., Wang X., Hu M., Hou J., Du Y., Si W., Yang L., Xu L., Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Frontiers in Microbiology. 2023;14:1181545. DOI: https://doi.org/10.3389/fmicb.2023.1181545
80. Auffret M. D., Dewhurst R. J., Duthie C. A., Rooke J. A., John Wallace R., Freeman T. C., Stewart R., Watson M., Roehe R. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome. 2017;5(1):159. DOI: https://doi.org/10.1186/s40168-017-0378-z
81. Wang Y., Majak W., McAllister T. A. Frothy bloat in ruminants: cause, occurrence, and mitigation strategies. Animal Feed Science Technology. 2012;172(1-2):103–114. DOI: https://doi.org/10.1016/j.anifeedsci.2011.12.012
82. Azad E., Derakhshani H., Forster R.J., Gruninger R.J., Acharya S., McAllister T.A., Khafipour E. Characterization of the rumen and fecal microbiome in bloated and non-bloated cattle grazing alfalfa pastures and subjected to bloat prevention strategies. Sci Rep. 2019;9(1):4272. DOI: https://doi.org/10.1038/s41598-019-41017-3
83. Fu Y., He Y., Xiang K., Zhao C., He Z., Qiu M., Hu X., Zhang N. The role of rumen microbiota and its metabolites in subacute ruminal acidosis (SARA)-induced inflammatory diseases of ruminants. Microorganisms. 2022;10(8):1495. DOI: https://doi.org/10.3390/microorganisms10081495
84. Plaizier J. C., Danesh Mesgaran M., Derakhshani H., Golder H., Khafipour E., Kleen J. L., Lean I., Loor J., Penner G., Zebeli Q. Review: Enhancing gastrointestinal health in dairy cows. Animal. 2018;12(s2):s399–s418. DOI: https://doi.org/10.1017/S1751731118001921
85. Abdela N. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achievements in the Life Sciences. 2016;10(2):187–196. DOI: https://doi.org/10.1016/j.als.2016.11.006
86. Hu X., Li S., Mu R., Guo J., Zhao C., Cao Y., Zhang N., Fu Y. The rumen microbiota contributes to the development of mastitis in dairy cows. Microbiology Spectrum. 2022;10(1):e0251221. DOI: https://doi.org/10.1128/spectrum.02512-21
87. Mu Y. Y., Qi W. P., Zhang T., Zhang J. Y., Mei S. J., Mao S. Y. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. Journal of Dairy Science. 2021;104(10):10780–10795. DOI: https://doi.org/10.3168/jds.2021-20490
88. Plaizier J. C., Danscher A. M., Azevedo P. A., Derakhshani H., Andersen P. H., Khafipour E. A grain-based SARA challenge affects the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract of dairy cows. Animals (Basel). 2021;11(6):1658. DOI: https://doi.org/10.3390/ani11061658
89. Plaizier J. C., Li S., Danscher A. M., Derakshani H., Andersen P. H., Khafipour E. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology. 2017;74(2):485–495. DOI: https://doi.org/10.1007/s00248-017-0940-z
90. Mao S. Y., Zhang R. Y., Wang D. S., Zhu W. Y. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe. 2013;24:12–19. DOI: https://doi.org/10.1016/j.anaerobe.2013.08.003
91. Brown D. Optimising rumen health and the effect this will have on ketosis. Livestock. 2018;23(4):174–178. DOI: https://doi.org/10.12968/live.2018.23.4.174
92. Rodriguez-Jimenez S., Haerr K. J., Trevisi E., Loor J. J., Cardoso F. C., Osorio J. S. Prepartal standing behavior as a parameter for early detection of postpartal subclinical ketosis associated with inflammation and liver function biomarkers in peripartal dairy cows. Journal of Dairy Science. 2018;101(9):8224–8235. DOI: https://doi.org/10.3168/jds.2017-14254
93. Khalil A., Batool A., Arif S. Healthy Cattle Microbiome and Dysbiosis in Diseased Phenotypes. Ruminants. 2022;2(1):134–156. DOI: https://doi.org/10.3390/ruminants2010009
94. Halfen J., Carpinelli N.A., Lasso-Ramirez S., Michelotti T. C., Fowler E.C., St-Pierre B., Trevisi E., Osorio J. S. Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring's Postnatal Growth and Gut Microbiome Development. Microorganisms. 2023;11(7):1839. DOI: https://doi.org/10.3390/microorganisms11071839
95. Huang Y., Li Y., He B., Hu J., Mohsin M. A., Yu H., Wang P., Zhang P., Du Y., Huang L., Shen W., Zhou X. The influence of ketosis on the rectal microbiome of chinese holstein cows. Pakistan Veterinary Journal. 2019;39(2):175–180. DOI: https://doi.org/10.29261/pakvetj/2019.041
96. Xiang K., Hu X., Mu R., Wang Y., Zhao C., Zhang N., Fu Y. Rumen microbiota alterations during ketosis is associated with the development of mastitis in dairy cows. Research Square (preprint). 2021; (2):1–24
97. Miles A. M., McArt J. A. A., Lima S. F., Neves R. C., Ganda E. The association of hyperketonemia with fecal and rumen microbiota at time of diagnosis in a case-control cohort of early lactation cows. BMC Veterinary Research. 2022;18(1):411. DOI: https://doi.org/10.1186/s12917-022-03500-4
98. Welch C. B., Ryman V. E., Pringle T. D., Lourenco J. M. Utilizing the gastrointestinal microbiota to modulate cattle health through the microbiome-gut-organ axes. Microorganisms. 2022;10(7):1391. DOI: https://doi.org/10.3390/microorganisms10071391
99. Zinicola M., Lima F., Lima S., Machado V., Gomez M., Döpfer D., Guard C., Bicalho R. Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS One. 2015;10(3):e0120504. DOI: https://doi.org/10.1371/journal.pone.0120504
100. Hu X., Li S., Fu Y., Zhang N. Targeting gut microbiota as a possible therapy for mastitis. European Journal of Clinical Microbiology & Infectious Diseases. 2019;38(8):1409–1423. DOI: https://doi.org/10.1007/s10096-019-03549-4
101. Machado M. G., Sencio V., Trottein F. Short-chain fatty acids as a potential treatment for infections: a closer look at the lungs. Infection and Immunity. 2021;89(9):e0018821. DOI: https://doi.org/10.1128/IAI.00188-21
102. Gu F., Zhu S., Tang Y., Liu X., Jia M., Malmuthuge N., Valencak T. G., McFadden J. W., Liu J. X., Sun H. Z. Gut microbiome is linked to functions of peripheral immune cells in transition cows during excessive lipolysis. Microbiome. 2023;11(1):40. DOI: https://doi.org/10.1186/s40168-023-01492-3
103. Gu F., Zhu S., Hou J., Tang Y., Liu J. X., Xu Q., Sun H. Z. The hindgut microbiome contributes to host oxidative stress in postpartum dairy cows by affecting glutathione synthesis process. Microbiome. 2023;11(1):87. DOI: https://doi.org/10.1186/s40168-023-01535-9
104. Uyeno Y., Shigemori S., Shimosato T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments. 2015;30(2):126–132. DOI: https://doi.org/10.1264/jsme2.ME14176
105. Крупин Е. О., Харченко А. М., Шакиров Ш. К., Григорьева Т. В., Тагиров М. Ш. Метагеномный анализ изменения микробиоты рубца коров при использовании экспериментального кормового концентрата. Достижения науки и техники АПК. 2018;32(10):79–81. DOI: https://doi.org/10.24411/0235-2451-2018-11018 EDN: VMIWCE
106. Йылдырым Е. А., Лаптев Г. Ю., Ильина Л. А., Дуняшев Т. П., Тюрина Д. Г., Филиппова В. А., Бражник Е. А., Тарлавин Н. В., Дубровин А. В., Новикова Н. И., Солдатова В. В., Зайцев С. Ю. Таксономическая и функциональная характеристика микробиоты рубца лактирующих коров под влиянием пробиотика целлобактерина+. Сельскохозяйственная биология. 2020;55(6):1204–1219. DOI: https://doi.org/10.15389/agrobiology.2020.6.1204rus EDN: DIXEBM
107. Mu Y., Lin X., Wang Z., Hou Q., Wang Y., Hu Z. High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. MicrobiologyOpen. 2019;8(4):e00673. DOI: https://doi.org/10.1002/mbo3.673
108. Indugu N., Vecchiarelli B., Baker L. D., Ferguson J. D., Vanamala J. K. P., Pitta D. W. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiology. 2017;17(1):190. DOI: https://doi.org/10.1186/s12866-017-1098-z
109. Jami E., White B. A., Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One. 2014;9(1):e85423. DOI: https://doi.org/10.1371/journal.pone.0085423
110. Chuang S. T., Ho S. T., Tu P. W., Li K. Y., Kuo Y. L., Shiu J. S., Wang S. Y., Chen M. J. The rumen specific bacteriome in dry dairy cows and its possible relationship with phenotypes. Animals (Basel). 2020;10(10):1791. DOI: https://doi.org/10.3390/ani10101791
111. Xue M. Y., Sun H. Z., Wu X. H., Liu J. X., Guan L. L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome. 2020;8(1):64. DOI: https://doi.org/10.1186/s40168-020-00819-8
112. Wang X., Zeng H., Xu J., Zhai Y., Xia H., Xi Y., Han Z. Characteristics of ruminal microbiota and metabolome in Holstein cows differing in milk protein concentrations. Journal of Animal Science. 2022;100(11):skac253. DOI: https://doi.org/10.1093/jas/skac253
113. Zhang C., Wang M., Liu H., Jiang X., Chen X., Liu T., Yin Q., Wang Y., Deng L., Yao J., Wu S. Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows. Journal of Animal Science Biotechnology. 2023;14(1):63. DOI: https://doi.org/10.1186/s40104-023-00862-z
114. Zang X. W., Sun H. Z., Xue M. Y., Zhang Z., Plastow G., Yang T., Guan L. L., Liu J. X. Heritable and nonheritable rumen bacteria are associated with different characters of lactation performance of dairy cows. ASM Journals. 2022;7(5):e0042222. DOI: https://doi.org/10.1128/msystems.00422-22
Рецензия
Для цитирования:
Лиходеевский Г.А., Богатова П.С., Лиходеевская О.Е. Бактериальная микробиота желудочно-кишечного тракта крупного рогатого скота молочного направления: состав, функции, значение (обзор). Аграрная наука Евро-Северо-Востока. 2024;25(2):159–171. https://doi.org/10.30766/2072-9081.2024.25.2.159-171
For citation:
Lihodeevsky G.A., Bogatova P.S., Lihodeevskaya O.E. The bacterial microbiota of the gastrointestinal tract of dairy cattle: structure, functions, importance (review). Agricultural Science Euro-North-East. 2024;25(2):159–171. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.2.159-171