Study of the expression of cellulose synthase genes during plant growth of flax
https://doi.org/10.30766/2072-9081.2024.25.3.368-378
Abstract
During the selection of crops aimed at creating high-fiber varieties, it is important to determine the patterns of fiber formation at the molecular level and the genotype specificity of cellulose synthesis processes, to study the efficiency of the genes responsible for cellulose synthesis at various stages of plant ontogenesis. The aim of the work was to study the expression of flax cellulose synthase genes. The objects of the study were 8 samples of flax (genus Linum), differing in fiber content: 7 cultivarеs of Linum usitatissimum L., of which 5 cultivarеs of fiber flax, 2 cultivarеs of oilseed flax, as well as one sample of large-flowered flax (L. grandiflorum Desf.). The studied cultivar were grown in a growth chamber. Samples of plant material were taken on the 10th, 20th, 30th, 40th and 50th day after germination. RNA extraction and cDNA synthesis were carried out. RNA sequences of CesA1, CesA4, CesA6, CesA7 were obtained and gene-specific primers for PCR were developed. Gene expression was determined by semi-quantitative RT-PCR, and reaction products were separated by size using a 1.2% agarose gel. Based on the data obtained, the presence of phase- and genotype-specificity in the process of expression of cellulose synthases of the CesA family in the flax stem was established. Cellulose synthases of the primary cell wall of flax (CesA1, CesA6) show a dynamic increase in expression up to the «herringbone» stage, and then the expression gradually decreases towards the onset of rapid growth phase, while cellulose synthases of the secondary cell wall (CESA4, CESA7) are characterized by a constant increase in expression from the first days of the development of seedlings to the phase of rapid growth.
Keywords
About the Authors
T. A. BazanovRussian Federation
Taras A. Bazanov, PhD in Chemical Science, Head of the Laboratory of the molecular-genetic researches and cell selection, leading researcher
Komsomolsky prospect, 17/56, Tver, 170041
I. V. Ushapovsky
Russian Federation
Igor V. Ushapovsky, PhD in Biological Science, leading researcher, the Laboratory of the molecular-genetic researches and cell selection, Deputy Director for Science
Komsomolsky prospect, 17/56, Tver, 170041
N. N. Loginova
Russian Federation
Natalya N. Loginova, researcher, the Laboratory of the molecular-genetic researches and cell selection
Komsomolsky prospect, 17/56, Tver, 170041
E. V. Minina
Russian Federation
Ekaterina V. Minina, postgraduate, junior researcher, the Laboratory of the molecular-genetic researches and cell selection
Komsomolsky prospect, 17/56, Tver, 170041
P. D. Veresova
Russian Federation
Polina D. Veresova, junior researcher, the Laboratory of the molecular-genetic researches and cell selection
Komsomolsky prospect, 17/56, Tver, 170041
References
1. Dhaliwal J. S. Natural fibers: applications. Generation, development and modifications of natural fibers. London: IntechOpen, 2020. Pp. 1–23. DOI: https://doi.org/10.5772/intechopen.86884
2. Mohite S., Patil C. K. Linseed Biodiesel – A Review. FLAME 2022: Advances in Fluid and Thermal Engineering. Lecture Notes in Mechanical Engineering. Singapore: Springer, 2023. Pp. 131–141. DOI: https://doi.org/10.1007/978-981-99-2382-3_11
3. Haag K., Padovani J., Fita S., Trouvé J., Pineau C., Hawkins S., De Jong H., Deyholos M., Chabbert B., Müssig J., Beaugrand J. Influence of flax fibre variety and year-to-year variability on composite properties. Industrial Crops and Products. 2017;98:1–9. DOI: https://doi.org/10.1016/j.indcrop.2016.12.028
4. Pisupati A., Willaert L., Goethals F., Uyttendaele W., Park C. H. Variety and growing condition effect on the yield and tensile strength of flax fibers. Industrial crops and products. 2021;170:113736. DOI: https://doi.org/10.1016/j.indcrop.2021.113736
5. Kvavadze E., Bar-Yosef O., Belfer-Cohen A., Boaretto E., Jakeli N., Matskevich Z., Meshveliani T. 30,000-year-old wild flax fibers. Science. 2009;325(5946):1359. DOI: https://doi.org/10.1126/science.1175404
6. Gorshkova T., Chernova T., Mokshina N., Ageeva M., Mikshina P. Plant ‘muscles’: fibers with a tertiary cell wall. New Phytologist. 2018;218(1):66–72. DOI: https://doi.org/10.1111/nph.14997
7. Ageeva M., Petrovská B., Kieft H., Sal’nikov V., Snegireva A., Van Dam J., Van Veenendaal W., Emons A., Gorshkova T., Van Lammeren A. Intrusive growth of flax phloem fibers is of intercalary type. Planta. 2005;222:565–574. DOI: https://doi.org/10.1007/s00425-005-1536-2
8. Snegireva A., Chernova T., Ageeva M., Lev-Yadun S., Gorshkova T. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants. 2015;7:plv061. DOI: https://doi.org/10.1093/aobpla/plv061
9. Mokshina N., Chernova T., Galinousky D., Gorshkov O., Gorshkova T. Key stages of fiber development as determinants of bast fiber yield and quality. Fibers. 2018;6(2):20. DOI: https://doi.org/10.3390/fib6020020
10. Gorshkova T., Mokshina N., Chernova T., Ibragimova N., Salnikov V., Mikshina P., Tryfona T., Banasiak A., Immerzeel P., Dupree P., Mellerowicz E. Aspen tension wood fibers contain β-(1→ 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiology. 2015;169(3):2048–2063. DOI: https://doi.org/10.1104/pp.15.00690
11. Lampugnani E. R., Flores-Sandoval E., Tan Q. W., Mutwil M., Bowman J. L., Persson S. Cellulose synthesis – central components and their evolutionary relationships. Trends in Plant Science. 2019;24(5):402–412. DOI: https://doi.org/10.1016/j.tplants.2019.02.011
12. Daras G., Templalexis D., Avgeri F., Tsitsekian D., Karamanou K., Rigas S. Updating insights into the catalytic domain properties of plant cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins. Molecules. 2021;26(14):4335. DOI: https://doi.org/10.3390/molecules26144335
13. Wilson T. H., Kumar M., Turner S. R. The molecular basis of plant cellulose synthase complex organisation and assembly. Biochemical Society Transactions. 2021;49(1):379–391. DOI: https://doi.org/10.1042/BST20200697
14. Haigler C. H., Roberts A. W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective. Cellulose. 2019;26:227–247. DOI: https://doi.org/10.1007/s10570-018-2157-9
15. Purushotham P., Ho R., Zimmer J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science. 2020;369(6507):1089–1094. DOI: https://doi.org/10.1126/science.abb2978
16. Roach M. J., Deyholos M. K. Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Molecular Genetics and Genomics. 2007;278:149–165. DOI: https://doi.org/10.1007/s00438-007-0241-1
17. Mokshina N., Gorshkov O., Galinousky D., Gorshkova T. Genes with bast fiber-specific expression in flax plants – Molecular keys for targeted fiber crop improvement. Industrial crops and products. 2020;152:112549. DOI: https://doi.org/10.1016/j.indcrop.2020.112549
18. Горбова М. А., Мансапова А. И. Изучение сортов льна-долгунца томской селекции в подтаёжной зоне Омской области. Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур: сб. мат-лов 11-й Всеросс. конф. молодых учёных и специалистов. Краснодар: ФГБНУ ФНЦ ВНИИМК имени В. С. Пустовойта, 2021. С. 44–49. DOI: https://doi.org/10.25230/conf11-2021-44-49
19. Gorshkova T. A., Sal'nikov V. V., Chemikosova S. B., Ageeva M. V., Pavlencheva N. V., Van Dam J. E. The snap point: a transition point in Linum usitatissimum bast fiber development. Industrial Crops and Products. 2003;18(3):213–221. DOI: https://doi.org/10.1016/S0926-6690(03)00043-8
20. Guenin S., Mauriat M., Pelloux J., Van Wuytswinkel O., Bellini C., Gutierrez L. Normalization of qRT-PCR data: the necessity of adopting a sysematic, experimental conditions-specific, validation of references. Journal of experimental botany. 2009;60(2):487–493. DOI: https://doi.org/10.1093/jxb/ern305
21. Kumar S., Jordan M. C., Datla R., Cloutier S. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum usitatissimum L.). PloS One. 2013;8(7):e69124. DOI: https://doi.org/10.1371/journal.pone.0069124
22. Thambugala D., Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). Journal of Applied Genetics. 2014;55:423–432. DOI: https://doi.org/10.1007/s13353-014-0222-0
23. Huis R., Hawkins S., Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC plant biology. 2010;10:71. DOI: https://doi.org/10.1186/1471-2229-10-71
24. Galinousky D., Padvitski T., Bayer G., Pirko Y., Pydiura N., Anisimova N., Nikitinskaya T., Khotyleva L., Yemets A., Kilchevsky A., Blume Ya. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.). Cell Biology International. 2019;43(9):1065–1071. DOI: https://doi.org/10.1002/cbin.10837
25. Chantreau M., Chabbert B., Billiard S., Hawkins S., Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus‐induced gene silencing. Plant biotechnology journal. 2015;13(9):1312–1324. DOI: https://doi.org/10.1111/pbi.12350
26. Mokshina N., Gorshkova T., Deyholos M. K. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS One. 2014;9(6):e97949. DOI: https://doi.org/10.1371/journal.pone.0097949
Review
For citations:
Bazanov T.A., Ushapovsky I.V., Loginova N.N., Minina E.V., Veresova P.D. Study of the expression of cellulose synthase genes during plant growth of flax. Agricultural Science Euro-North-East. 2024;25(3):368-378. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.3.368-378