Применение искусственного интеллекта в сельском хозяйстве Китая (обзор)
https://doi.org/10.30766/2072-9081.2024.25.5.739-753
Аннотация
В последние годы наблюдаются значительные прорывы в развитии технологий с применением искусственного интеллекта (ИИ), кардинальным образом влияющих на самые разнообразные сферы жизни и деятельности человека. В данной обзорной статье в качестве объекта исследования рассматривается использование ИИ в сельском хозяйстве на примере Китая, который является лидером в темпах внедрения ИИ в национальную экономику и стремится перехватить у США общее лидерство в разработках ИИ-технологий. Благодаря активной работе в этом направлении и значительным финансовым вложениям в данную область, Китаю удалось существенно трансформировать свой сельскохозяйственный сектор. Цель статьи – анализ современных тенденций и возможностей, которые дает применение ИИ в аграрном секторе экономики КНР. Для этого рассмотрены трудности, с которыми сталкивается Китай при развитии сельского хозяйства, а также основные, известные на сегодняшний день направления применения ИИ в сельском хозяйстве и виды используемых технологий. Обобщена информация о китайских компаниях, применяющих ИИ-технологии в сельском хозяйстве, включая их специализацию, используемые технологии и извлекаемые преимущества. Предварительные данные показали, что ИИ используется, в первую очередь, для повышения производительности труда и эффективности производства, а, во вторую очередь, для решения проблем нехватки рабочей силы и достижения устойчивости производства. Анализ ситуации позволяет сделать вывод о том, что ИИ может стать главной движущей силой развития сельского хозяйства.
Ключевые слова
Об авторе
Е. Г. РаевскаяРоссия
Раевская Елена Геннадьевна, кандидат хим. наук, старший научный сотрудник
ул. Усиевича, д. 20, г. Москва, 125190
Список литературы
1. The state of AI in 2023: Generative AI’s breakout year. McKinsey, 2023. Survey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
2. AI Index Report 2023 – Artificial Intelligence Index. URL: https://aiindex.stanford.edu/report/
3. Monostori L. Artificial Intelligence. In: Laperrière L., Reinhart G. (eds). CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer, 2014. pp. 47–50. DOI: https://doi.org/10.1007/978-3-642-20617-7_16703
4. Russell S. J., Norvig P. Artificial Intelligence: A Modern Approach (4th ed.). Hoboken: Pearson, 2021. p. 18.
5. Ask the AI experts: What's driving today's progress in AI? McKinsey & Company, 2017. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/ask-the-ai-experts-whats-driving-todays-progress-in-ai
6. Струкова П. Э. Искусственный интеллект в Китае: современное состояние отрасли и тенденции развития. Вестник Санкт-Петербургского университета. Востоковедение и африканистика. 2020;12(4):588–606. DOI: https://doi.org/10.21638/spbu13.2020.409 EDN: NMYQLN
7. Матвеенков К. Искусственный интеллект с китайской спецификой: станет ли Китай мировым лидером в сфере ИИ к 2030 году? Аналитическая статья. РМСД. 2022. Режим доступа: https://russiancouncil.ru/analyticsand-comments/analytics/iskusstvennyy-intellekt-s-kitayskoy-spetsifikoy-stanet-li-kitay-mirovym/
8. Johansson A. C. China's AI ecosystem – Stockholm School of Economics (Report). 2022. 68 p. URL: https://www.hhs.se/contentassets/bc962221471a415ba8ac01fbbf160277/chinas-ai-ecosystem-nov-2022.pdf
9. Haan K., Watts R. 24 Top AI Statistics and Trends in 2024. URL: https://www.forbes.com/advisor/business/ai-statistics/
10. Zhou Y., Li X., Liu Y. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy. 2020;91:104330. DOI: https://doi.org/10.1016/j.landusepol.2019.104330
11. Textor C. Distribution of the gross domestic product (GDP) across economic sectors in China from 2013 to 2023. Statista. URL: https://www.statista.com/statistics/270325/distribution-of-gross-domestic-product-gdp-acrosseconomic-sectors-in-china/
12. Chen S., Chen X., Xu J. Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management. 2016;76:105–124. DOI: https://doi.org/10.1016/j.jeem.2015.01.005
13. Chen A., He H., Wang J., Li M., Guan Q., Hao J. A Study on the Arable Land Demand for Food Security in China. Sustainability. 2019;11(17):4769. DOI: https://doi.org/10.3390/su11174769
14. Wang L., Anna H., Zhang L., Xiao Y., Wang Y., Xiao Y., Liu J., Ouyang Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chinese Geographical Science. 2019;29:809–819. DOI: https://doi.org/10.1007/s11769-018-0983-1
15. Li Y., Yang W., Shen X., Yuan G., Wang J. Water Environment Management and Performance Evaluation in Central China: A Research Based on Comprehensive Evaluation System. Water. 2019;11(12):2472. DOI: https://doi.org/10.3390/w11122472
16. Voumik L. C., Sultana T. Impact of urbanization, industrialization, electrification and renewable energy on the environment in BRICS: fresh evidence from novel CS-ARDL model. Heliyon. 2022;8(11):e11457. DOI: https://doi.org/10.1016/j.heliyon.2022.e11457
17. Su Y., He S., Wang K., Shahtahmassebi A. R., Zhang L., Zhang J., Zhang M., Gan M. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production. 2020;252:119650. DOI: https://doi.org/10.1016/j.jclepro.2019.119650
18. Cai J., Li X., Liu L., Chen Y., Wang X., Lu S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Science of the Total Environment. 2021;776:145837. DOI: https://doi.org/10.1016/j.scitotenv.2021.145837
19. Wang J., Cao Y., Fang X., Li G., Cao Y. Does land tenure fragmentation aggravate farmland abandonment? Evidence from big survey data in rural China. Journal of Rural Studies. 2022;91:126–135. DOI: https://doi.org/10.1016/j.jrurstud.2022.03.013
20. Hua J., Wang H., Kang M., Wang X., Guo S., Chang F., Wang F. Y. The design and implementation of a distributed agricultural service system for smallholder farmers in China. International Journal of Agricultural Sustainability. 2023;21(1):2221108. DOI: https://doi.org/10.1080/14735903.2023.2221108
21. Liu Y., Zang Y., Yang Y. China’s rural revitalization and development: Theory, technology and management. Journal of Geographical Sciences. 2020;30:1923–1942. DOI: https://doi.org/10.1007/s11442-020-1819-3
22. Li D., Yang H. State-of-the-art Review for Internet of Things in Agriculture. Transactions of the Chinese Society for Agricultural Machinery. 2018;49(1):1–20. DOI: https://doi.org/10.6041/j.issn.1000-1298.2018.01.001
23. Lee C. C., Yan J., Wang F. Impact of population aging on food security in the context of artificial intelligence: Evidence from China. Technological Forecasting and Social Change. 2024;199:123062. DOI: https://doi.org/10.1016/j.techfore.2023.123062
24. Wan G. Accounting for income inequality in rural China: a regression-based approach. In China's Rural Economy after WTO. Routledge, 2019. pp. 115–133.
25. Hau L., Zhu H., Huang R., Ma X. Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression. Energy. 2020;213:118781. DOI: 10.1016/j.energy.2020.118781
26. Kotte B., Naveen A., Sai Akhil V., Lingireddy H., Gowtham K. V., Mudhale A., Sri B. G., Abhishek E. Artificial intelligence (AI) and its applications in agriculture: A Review. Environment Conservation Journal. 2024;25(1):274–288. DOI: https://doi.org/10.36953/ECJ.24052645
27. Shi L., Shi G., Qiu H. General review of intelligent agriculture development in China. China Agricultural Economic Review. 2019;11(1):39–51. DOI https://doi.org/10.1108/CAER-05-2017-0093
28. Sood A., Sharma R. K., Bhardwaj A. K. Artificial intelligence research in agriculture: A review. Online Information Review. 2022;46(6):1054–1075. DOI: https://doi.org/10.1108/OIR-10-2020-0448
29. Raj E. F. I., Appadurai M., Athiappan K. Precision farming in modern agriculture. In Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT. Singapore: Springer Singapore, 2022. pp. 61–87.
30. Gawande V., Saikanth D. R. K., Sumithra B. S., Aravind S. A., Swamy G. N., Chowdhury M., Singh B. V. Potential of Precision Farming Technologies for Eco-Friendly Agriculture. International Journal of Plant & Soil Science. 2023;35(19):101–112. DOI: https://doi.org/10.9734/ijpss/2023/v35i193528
31. Henrietta H. M. Artificial intelligence in agriculture: a review of current applications and future trends. In Futuristic Trends in Agriculture Engineering & Food Sciences Vol. 3 Book 11. IIP Series. 2024;3:1–6. DOI: https://doi.org/10.58532/V3BCAG11P1CH1
32. Ouhami M., Hafiane A., Es-Saady Y., El Hajji M., Canals R. Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing. 2021;13(13):2486. DOI: https://doi.org/10.3390/rs13132486
33. Eli-Chukwu N. C. Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research. 2019;9(4):4377–4383. DOI: https://doi.org/10.48084/etasr.2756
34. Fountas S., Mylonas N., Malounas I., Rodias E., Hellmann Santos C., Pekkeriet E. Agricultural robotics for field operations. Sensors. 2020;20(9):2672. DOI: https://doi.org/10.3390/s20092672
35. Neethirajan S. Artificial intelligence and sensor technologies in dairy livestock export: charting a digital transformation. Sensors. 2023;23(16):7045. DOI: https://doi.org/10.3390/s23167045
36. Sharma K., Sharma C., Sharma S., Asenso E. Broadening the research pathways in smart agriculture: predictive analysis using semiautomatic information modeling. Journal of Sensors. 2022;1:5442865. DOI: https://doi.org/10.1155/2022/5442865
37. Bačiulienė V., Bilan Y., Navickas V., Civín L. The Aspects of artificial intelligence in different phases of the food value and supply chain. Foods. 2023;12(8):1654. DOI: https://doi.org/10.3390/foods12081654
38. Niranjan P. Y., Rajpurohit V. S., Malgi R. A survey on chat-bot system for agriculture domain. In 2019 1st International Conference on Advances in Information Technology (ICAIT). IEEE, Chikmagalur, India, 2019. pp. 99–103. DOI: https://doi.org/10.1109/ICAIT47043.2019.8987429
39. Mostaco G. M., De Souza I. R. C., Campos L. B., Cugnasca C. E. AgronomoBot: a smart answering Chatbot applied to agricultural sensor networks. In 14th international conference on precision agriculture. 2018;24:1–13.
40. Cheong S. M., Sankaran K., Bastani H. Artificial intelligence for climate change adaptation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2022;12(5):e1459. DOI: https://doi.org/10.1002/widm.1459
41. Sachithra V., Subhashini L. D. C. S. How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artificial Intelligence in Agriculture. 2023;8:46–59. DOI: https://doi.org/10.1016/j.aiia.2023.04.002
42. Bhagat P. R., Naz F., Magda R. Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PloS one. 2022;17(6):e0268989. DOI: https://doi.org/10.1371/journal.pone.0268989
43. Oliveira R. C. d., Silva R. D. d. S. e. Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Applied Sciences. 2023;13(13):7405. DOI: https://doi.org/10.3390/app13137405
44. Mishra H., Mishra D. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agriculture Science. 2023;1:1–16.
45. Singh G., Kalra N., Yadav N., Sharma A., Saini M. Smart agriculture: a review. Siberian Journal of Life Sciences and Agriculture. 2022;14(6):423–454. DOI: https://doi.org/10.12731/2658-6649-2022-14-6-423-454
46. Application of artificial intelligence in agriculture: How to make AI the cornerstone of precision agriculture? Lingzi AI Technology. 2023. URL: https://baijiahao.baidu.com/s?id=1769836601583870425&wfr=spider&for=pc
47. Slotta D. Artificial intelligence in China – statistics & facts. Statista. 2024. URL: https://www.statista.com/topics/8383/artificial-intelligence-in-china/#topicOverview
48. Zhou O. XAG smart agriculture system: reshaping the future of an AI-powered smart farm. In: Elbehri A. and Chestnov R. (eds). Digital agriculture in action – Artificial intelligence for agriculture. Bangkok: FAO and ITU, 2021. pp. 49–60. DOI: https://doi.org/10.4060/cb7142en
49. XAG Corporate Social Responsibility Report. 2020. 34 p. URL: https://www.xa.com/en/about/csr
50. Zhenyu Z. Using Alibaba Cloud’s AI and Alibaba’s ecosystem resource to support the digitalization of agriculture in Yanliang. In: Elbehri A. and Chestnov R. (eds). Digital agriculture in action – Artificial intelligence for agriculture. Bangkok: FAO and ITU, 2021. pp. 61–70. DOI: https://doi.org/10.4060/cb7142en
51. Wang J., Si F., Yang S., Wang L. Business Model Innovation of Chinese Logistics Enterprises from the Perspective of Ecosystems: The Case of Cainiao Network. Preprint. 2023. DOI: https://doi.org/10.21203/rs.3.rs-3584501/v1
52. Cainiao smart warehouse helps increase fruit prices. 2022. URL: https://mp.weixin.qq.com/s/Rhm2uffvQdrvYGEKqEEJDA
53. Roser M., Ritchie H. How has world population growth changed over time? Our World in Data. 2023. URL: https://ourworldindata.org/population-growth-over-time
54. China AI in Agriculture Market by Technology (Machine Learning, Predictive Analytics and Computer Vision), by Offering (Hardware, Software and AI-as-A-Service), by Application (Precision Farming, Livestock Monitoring, Agriculture Robots, Drone and Others), by Region, Competition, Forecast and Opportunities, 2019–2029F. TechsciResearch Report. URL: https://www.techsciresearch.com/report/china-ai-in-agriculture-market/1887.html#collapsefour
55. Hopkins M. Report: AI to Boost China’s Growth, Agriculture to Benefit. 2024. URL: https://www.agribusinessglobal.com/markets/asia/report-ai-to-boost-chinas-growth-agriculture-to-benefit/
56. Zhou G., Chu G., Li L., Meng L. The effect of artificial intelligence on China’s labor market. China Economic Journal. 2019;13(1):24–41. DOI: https://doi.org/10.1080/17538963.2019.1681201
57. Vadlamudi S. How Artificial Intelligence Improves Agricultural Productivity and Sustainability: A Global Thematic Analysis. Asia Pacific Journal of Energy and Environment. 2019;6(2):91–100. DOI: https://doi.org/10.18034/apjee.v6i2.542
58. Munnisunker S., Nel L., Diederichs D. The Impact of Artificial Intelligence on Agricultural Labour in Europe. Journal of Agricultural Informatics. 2022;13(1):638. DOI: https://doi.org/10.17700/jai.2022.13.1.638
59. Sahota N. AI in Agriculture: Boosting Productivity and Sustainability. 2023. URL: https://www.neilsahota.com/ai-in-agriculture-boosting-productivity-and-sustainability/
60. Lai Z., Yunus N. M. A preliminary study on artificial intelligence and labour productivity in China. International Business Education Journal. 2024;17(2):12–25. DOI: https://doi.org/10.37134/ibej.Vol17.2.2.2024
61. Tian T., Li L., Wang J. The Effect and Mechanism of Agricultural Informatization on Economic Development: Based on a Spatial Heterogeneity Perspective. Sustainability. 2022;14(6):3165. DOI: https://doi.org/10.3390/su14063165
Рецензия
Для цитирования:
Раевская Е.Г. Применение искусственного интеллекта в сельском хозяйстве Китая (обзор). Аграрная наука Евро-Северо-Востока. 2024;25(5):739–753. https://doi.org/10.30766/2072-9081.2024.25.5.739-753
For citation:
Raevskaya E.G. Introducing artificial intelligence in Chinese agriculture (review). Agricultural Science Euro-North-East. 2024;25(5):739–753. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.5.739-753