Витамин Е в кормлении молочного скота (обзор)
https://doi.org/10.30766/2072-9081.2024.25.5.770-784
Аннотация
Витамин Е (токоферол) – жирорастворимый витамин, который оказывает значительное влияние на рост и здоровье животных. В настоящее время синтезировано 8 изомеров токоферола; их особенность заключается в различном расположении метильных групп в хромановом ядре. В организме животных изомеры витамина Е не могут превращаться друг в друга, и их биологическая активность значительно различается. Токоферол обладает мощным антиоксидантным действием, защищая вещества от окисления в организме, и играет важную роль в поддержании нормальных метаболических процессов и физиологических функций. Витамин Е обеспечивает защиту клеточных мембран от окислительного повреждения перекисью водорода, способствует поддержанию иммуномодулирующего эффекта и повышает устойчивость организма к различным патогенам. Кроме того, выполняет существенную функцию в эмбриогенезе, метаболизме нуклеиновых кислот, биосинтезе аскорбиновой кислоты и обеспечивает сохранность структурных и функциональных характеристик тканей. Изомер α-токоферол обладает наивысшей биологической активностью. Использование в кормлении сельскохозяйственных животных кормовых добавок α-токоферола представлено в виде натуральной формы RRR или синтетической формы all-rac, включающей все восемь стереоизомеров (четыре с конфигурацией 2R и четыре с конфигурацией 2S) в равных количествах. Данный обзор на основе 105 публикаций предлагает свод современных знаний и исследований, сфокусированных на изучении физиологической роли витамина Е в питании молочного скота, а также анализирует влияние различных дозировок α-токоферола на зоотехнические показатели.
Об авторе
Е. В. ТуаеваРоссия
Туаева Евгения Викторовна, доктор с.-х. наук, доцент, ведущий научный сотрудник отдела кормления сельскохозяйственных животных
пос. Дубровицы, д. 60, г.о. Подольск, Московская область, 142132, e-mail: priemnaya-vij@mail.ru
Список литературы
1. Дуборезов В. М. Кормление молочных коров по детализированным нормам. Молочное и мясное скотоводство. 2020;(4):52-54. https://doi.org/10.33943/MMS.2020.19.15.009 EDN: ZHFBNW
2. Полищук Т. В., Бондаренко В. В. Изменчивость факториальной зависимости уровня молочной продуктивности коров от лактации. Актуальные вопросы переработки мясного и молочного сырья. 2021;(15):237-245. https://doi.org/10.47612/2220-8755-2020-15-237-245 EDN: WDMAMD
3. Шобель П., Сучкова И. Кормовые добавки АПЦ-высокая продуктивность + хорошее здоровье коров. Наше сельское хозяйство. 2020;(24(248)):50-53.
4. Теребова С. В., Гусаров И. В., Обряева О. Д. Молочное животноводство: проблемы повышения экономической эффективности на основе оптимизации кормления (часть 1). Молочное и мясное скотоводство. 2023;(3):50-56. https://doi.org/10.33943/MMS.2023.48.98.009 EDN: BKBFNY
5. Некрасов Р. В., Головин А. В., Махаев Е. А., Аникин А. С., Первов Н. Г., Стрекозов Н. И., [и др.]. Нормы потребностей молочного скота и свиней в питательных веществах: монография. М.: РАН, Федеральный научный центр животноводства - ВИЖ имени академика Л. К. Эрнста, 2018. 290 с. Режим доступа: https://animalration.ru/wp-content/uploads/2019/02/1nekrasova_r_v_golovina_a_v_makhaeva_e_a_red_normy_potrebnost.pdf
6. Nutrient Requirements of Dairy Cattle. 7 th ed. National Academies Press. Washington, D. C., 2001. 381 p. URL: https://profsite.um.ac.ir/~kalidari/software/NRC/HELP/NRC 2001.pdf
7. Nutrient Requirements of Dairy Cattle. 8 th ed. National Academies Press, 2021. 484 p. https://doi.org/10.17226/25806
8. Steinshamn H., Leiberb F. Department of Revision of Vitamin E recommendations for dairy cows in organic agriculture: a review-based approachhttps. Biological Agriculture & Horticulture. An International Journal for Sustainable Production Systems. 2023;39(4):223-246. https://doi.org/10.1080/01448765.2023.2200204
9. Doğru Pekiner B. Vitamin E as an antioxidant. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2003;32(4):243-267. https://doi.org/10.1501/Eczfak_0000000393
10. Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radical Biology and Medicine. 2021;176:1-15. https://doi.org/10.1016/j.freeradbiomed.2021.09.001
11. Bouwstra R. J., Nielen M., Stegeman J. A., Dobbelaar P., Newbold J. R., Jansen E. H. J. M., van Werven T. Vitamin E supplementation during the dry period in dairy cattle. Part I: adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. Journal of Dairy Science. 2010;93(12):5684-5695. https://doi.org/10.3168/jds.2010-3159
12. Idamokoro E. M., Falowo A. B., Oyeagu C. E., Afolayan A. J. Multifunctional activity of vitamin E in animal and animal products: A review. Journal of Animal Science. 2020;91(1):e13352. https://doi.org/10.1111/asj.13352
13. Ralla T., Kluenter A. M., Litta G., Müller M. A., Bonrath W., Schäfer C. Over 100 years of vitamin E: An overview from synthesis and formulation to application in animal nutrition. Journal of Animal Physiology and Animal Nutrition. 2024;108(3):646-663. https://doi.org/10.1111/jpn.13919
14. Peh H. Y., Tan W. D., Liao W., Wong W. F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacology & Therapeutics. 2016;162(6):152-169. https://doi.org/10.1016/j.pharmthera.2015.12.003
15. Bonrath W., Wyss A., Litta G., Baldeniu K., von dem Bussche&Hünnefeld L., Hilgemann E., Hoppe P., Stürmer R., Netscher T. Vitamins, 4. Vitamin E (Tocopherols, Tocotrienols). Ullmann’s Encyclopedia of Industrial Chemistry. 2021;1-24. https://doi.org/10.1002/14356007.o27_o07.pub2
16. Traber M. G., Head B. Vitamin E: How much is enough, too much and why! Free Radical Biology and Medicine. 2021;177:212-225. https://doi.org/10.1016/j.freeradbiomed.2021.10.028
17. McDowell L. R., Williams S. N., Hidiroglou N., Njeru C. A., Hill G. M., Ochoa L., Wilkinson N. S. Vitamin E Supplementation for the Ruminant. Animal Feed Science and Technology. 1996;60(3-4):273-296. https://doi.org/10.1016/0377-8401(96)00982-0
18. Azzi A., Stocker A. Vitamin E: non-antioxidant roles. Progress in Lipid Research. 2000;39(3):231-255. https://doi.org/10.1016/S0163-7827(00)00006-0
19. Scherf H., Machlin L. J., Frye T. M., Krautmann B. A., Williams S. N. Vitamin E Biopotency: Comparison of Various ‘Natural-Derived’ and Chemically Synthesized Alpha-Tocopherols. Animal Feed Science and Technology. 1996;59(1-3):115-126. https://doi.org/10.1016/0377-8401(95)00892-6
20. Leal L. N., Jensen S. K., Bello J. M., Den Hartog L. A., Hendriks W. H., Martín-Tereso J. Bioavailability of αtocopherol stereoisomers in lambs depends on dietary doses of all-rac- or RRR- α-tocopheryl acetate. Animal. 2019;13(9):1874-1882. https://doi.org/10.1017/S1751731118003373
21. Schmölz L., Birringer M., Lorkowski S., Wallert M. Complexity of vitamin E metabolism. World Journal of Biological Chemistry. 2016;7(1):14-43. https://doi.org/10.4331/wjbc.v7.i1.14
22. Dersjant-Li Y, Peisker M. Utilization of stereoisomers from alpha-tocopherol in livestock animals. Journal of Animal Physiology and Animal Nutrition. 2010;94(4):413-421. https://doi.org/10.1111/j.1439-0396.2009.00924.x
23. Vagni S., Saccone F., Pinotti L., Baldi A. Vitamin E Bioavailability: Past and Present Insights. Food and Nutrition Sciences. 2011;2(10):1088-1096. https://doi.org/10.4236/fns.2011.210146
24. Havard S., Leiber F. Revision of Vitamin E recommendations for dairy cows in organic agriculture: a reviewbased approach. Biological Agriculture & Horticulture. 2023;39(4):223-246. https://doi.org/10.1080/01448765.2023.2200204
25. Quek S. Y., Chu B. S., Baharin B. S. Commercial extraction of vitamin E from food sources. In: Preedy V, Watson R, editors. The encyclopedia of vitamin E. Wallingford: CAB International, 2007. pp. 140-152. URL: https://www.researchgate.net/publication/288516996_Commercial_extraction_of_vitamin_E_from_food_sources
26. Lashkari S., Jensen S. K., Bernes G. Biodiscrimination of alpha-tocopherol stereoisomers in plasma and tissues of lambs fed different proportions of all-rac-alpha-tocopheryl acetate and RRR-alpha-tocopheryl acetate. Journal of Animal Science. 2019;97(3):1222-1233. https://doi.org/10.1093/jas/skz011
27. Jensen S. K., Lauridsen C. α-Tocopherol Stereoisomers. Vitamins & Hormones. 2007;76:281-308. https://doi.org/10.1016/S0083-6729(07)76010-7
28. Kidane A., Nesheim I. L., Larsen H. J. S., Thuen E., Jensen S. K., Steinshamn H. Effects of supplementing midlactation dairy cows with seaweed and vitamin E on plasma and milk α -tocopherol and antibody response to immunezation. Journal of Agricultural Sciences. 2015;153(5):929-942. https://doi.org/10.1017/S0021859615000052
29. EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP). Scientific Opinion on the Safety and Efficacy of Vitamin E as a Feed Additive for All Animal Species. EFSA Journal. 2010;8(6):1635. https://doi.org/10.2903/j.efsa.2010.1635
30. Bjorneboe A., Bjorneboe G. E., Drevon C. A. Absorption, transport and distribution of vitamin E. Journal of Nutrition. 1990;120(3):233-242. https://doi.org/10.1093/jn/120.3.233
31. Wang X., Quinn P. J., Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38(4):309-336. https://doi.org/10.1016/s0163-7827(99)00008-9
32. Reboul E. Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants. 2017;6(4):95. https://doi.org/10.3390/antiox6040095
33. Brigelius-Flohé R., Kelly F. J., Salonen J. T., Neuzil J., Zingg J. M., Azzi A. The European perspective on vitamin E: current knowledge and future research. The American Journal of Clinical Nutrition. 2002;76(4):703-716. https://doi.org/10.1093/ajcn/76.4.703
34. Weiser H., Riss G., Kormann A. W. Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. The Journal of Nutrition. 1996;126(10):2539-2549. https://doi.org/10.1093/jn/126.10.2539
35. Burton G. W., Traber M. G., Acuff R. V., Walters D. N., Kayden H., Hughes L., Ingold K. Human plasma and tissue α-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. The American Journal of Clinical Nutrition 1998;67(4):669-684. https://doi.org/10.1093/ajcn/67.4.669
36. Cassano R. Vitamin E chemistry, biological activity and benefits on the skin. Handbook of diet, nutrition and the skin. 2012;2(1):144-163. https://doi.org/10.3920/978-90-8686-729-5_9
37. Lee G. Y., Han S. N. The Role of Vitamin E in Immunity. Nutrients. 2018;10(11):1614. https://doi.org/10.3390/nu10111614
38. Визнер Э. Кормление и плодовитость с.-х. животных. Пер. с нем. О. Н. Преображенского. М.: Колос, 1976. 158 с. Vizner E. Feeding and fertility of farm animals. Per. s nem. O. N. Preobrazhenskogo. Moscow: Kolos, 1976. 158 p.
39. Blatt D. H., Pryor W. A., Mata J. E., Rodriguez-Proteau R. Re-evaluation of the relative potency of synthetic and natural α-tocopherol: Experimental and clinical observations. The Journal of Nutritional Biochemistry. 2004;15(7):380-395. https://doi.org/10.1016/j.jnutbio.2003.12.011
40. Finch J. M., Turner R. J. Effects of selenium and vitamin E on the immune responses of domestic animals. Research in Veterinary Science. 1996;60(2):97-106. https://doi.org/10.1016/S0034-5288(96)90001-6
41. Lindqvist H., Nadeau E., Jensen S. K., Søegaard K. α-tocopherol and b-carotene in legume-grass mixtures as influenced by wilting, ensiling and type of silage additive. Grass and Forage Science. 2011;67(1):119-128. https://doi.org/10.1111/gfs.12058
42. Shingfield K. J., Salo-Väänänen P., Pahkala E., Toivonen V., Jaakkola S., Piironen V., Huhtanen P. Effect of forage conservation method, concenrate level and propylene glycol on the fatty acid composition and vitamin content of cows’ milk. Journal of Dairy Research. 2005;72(3):349-361. https://doi.org/10.1017/S0022029905000919
43. Lindqvist H., Nadeau E., Jensen S. K. Alpha‐tocopherol and β‐carotene in legume-grass mixtures as influenced by wilting, ensiling and type of silage additive. Grass and Forage Science. 2012;67(1);119-128. https://doi.org/10.1111/j.1365-2494.2011.00827.x
44. Qamar A., Saeed F., Nadeem M. T., Hussain A. I., Khan M. A., Niaz B. Probing the storage stability and sensorial characteristics of wheat and barley grasses juice. Food Science & Nutrition. 2019;7(3):554-562. https://doi.org/10.1002/fsn3.841
45. Mogensen L., Kristensen T., Søegaard K., Jensen S. K., Sehested J. Alfa-tocopherol and beta-carotene in roughages and milk in organic dairy herds. Livestock Science. 2012;145(1-3):44-54. https://doi.org/10.1016/j.livsci.2011.12.021
46. Kalač P., Samková E. The effects of feeding various forages on fatty acid composition of bovine milk fat: a review. Czech Journal of Animal Science. 2010;55(12):521-537. https://doi.org/10.17221/2485-CJAS
47. Höjer A., Adler S., Martinsson K., Jensen S. K., Steinshamn H., Thuen E., Gustavsson A.-M. Effect of legumegrass silages and α-tocopherol supplementation on fatty acid composition and α-tocopherol, β-carotene and retinol concentrations in organically produced bovine milk. Livestock Science. 2012:148(3);268-281. https://doi.org/10.3168/jds.2011-5226
48. Meglia G., Jensen S. K., Lauridsen C., Waller K. P. A-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. Journal of Dairy Research. 2006;73(2):227-234. https://doi.org/10.1017/S0022029906001701
49. Pekmezci D. Vitamin E and immunity. Vitamins & Hormones. 2011;86:179-215. https://doi.org/10.1016/B978-0-12-386960-9.00008-3
50. Bivona III J. J., Patel S., Vajdy M. Induction of cellular and molecular Immunomodulatory pathways by vitamin E and vitamin C. Expert Opinion on Biological Therapy. 2017;17(12):1539-1551. https://doi.org/10.1080/14712598.2017.1375096
51. Kuhn M. J., Sordillo L. M. Vitamin E analogs limit in vitro oxidant damage to bovine mammary endothelial cells. Journal of Dairy Science. 2021;104(6):7154-7167. https://doi.org/10.3168/jds.2020-19675
52. Hogan J. S., Weiss W. P., Smith K. L. Role of vitamin E and selenium in host defense against mastitis. Journal of Dairy Science. 1993;76(9):2795-2803. https://doi.org/10.3168/jds.S0022-0302(93)77618-3
53. Politis I., Hidiroglou N., Cheli F., Baldi A. Effects of vitamin E on urokinase-plasminogen activator receptor expression by bovine neutrophils. American Journal of Veterinary Research. 2001;62(12):1934-1938. https://doi.org/10.2460/ajvr.2001.62.1934
54. Bourne N., Wathes D. C., Lawrence K. E., McGowan M., Laven R. A. The effect of parenteral supplementation of vitamin E with selenium on the healthand productivity of dairy cattle in the UK. The Veterinary Journal. 2008;177(3);381-387. https://doi.org/10.1016/j.tvjl.2007.06.006
55. Fattah A. A. M., Abd Rabo F. H. R., EL-Dieb S. M., Elkashef H. A. S. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Veterinary Research. 2012;8:19. https://doi.org/10.1186/1746-6148-8-19
56. Quigley III J. D., Bernard J. K. Effects of addition of vitamin E to colostrum on serum α-tocopherol and immunoglobulin concentrations in neonatal calves. Food and Agricultural Immunology. 1995:7(3):295-298. https://doi.org/10.1080/09540109509354887
57. Schmidt N., Luhmann T., Hüther L., Meyer U., Barth S. A., Geue L., Menge C., Frahm J., Dänicke S. Effect of vitamin E supplementation in milk replacer and Shiga toxoid vaccination on serum α-tocopherol, performance, haematology and blood chemistry in male Holstein calves First published. Journal of Animal Physiology and Animal Nutrition. 2018;102(5):1167-1180. https://doi.org/10.1111/jpn.12926
58. Reddy P. G., Morrill J. L., Frey R. A. Vitamin E requirements of dairy calves. Journal of Dairy Science. 1987;70(1):123-129. https://doi.org/10.3168/jds.S0022-0302(87)79987-1
59. Nonnecke B. J., Foote M. R., Miller B. L., Beitz D. C., Horst R. L. Short communication: Fat-soluble vitamin and mineral status of milk. replacer-fed dairy calves: Effect of growth rate during the preruminant period. Journal of Dairy Science. 2010;93(6):2684-2690. https://doi.org/10.3168/jds.2009-2892
60. Mohri M. H., Seifi A., Khodadadi J. Effects of preweaning parenteral supplementation of vitamin E and selenium on hematology, serum proteins, and weight gain in dairy calves. Comparative Clinical Pathology. 2005;14(3):149-154. https://doi.org/10.1007/s00580-005-0581-3
61. Pekmezci D., Cakiroglu D. Investigation of immunomodulatory effects of levamisole and vitamin E on immunity and some blood parameters in newborn Jersey calves. Veterinary Research Communications. 2009;33(7):711-721. https://doi.org/10.1007/s11259-009-9220-9
62. Goodier G. E., Williams J. C., O’Reilly K. L., Snider T. G., Stanley C. C., Dolejsiova A. H., Williams C. C. Effects of supplemental vitamin E and lasaocid on growth and immune responses of calves challenged with Eimeriabovis. The Professional Animal Scientist. 2012;28(1):97-107. URL: https://www.researchgate.net/publication/237080842_Effects_of_supplemental_vitamin_E_and_lasalocid_on_growth_and_immune_responses_of_calves_challenged_with_Eimeria_bovis
63. Higuchi H., Nagahata H. Effects of vitamins A and E on superoxide production and intracellular signaling of neutrophils in Holstein calves. Canadian journal of veterinary research=Revue canadienne de recherche vétérinaire. 2000;64(1):69-75. URL: https://pubmed.ncbi.nlm.nih.gov/10680660
64. Otomaru K., Saito Sh., Endo K., Kohiruimaki M., Ohtsuka H. Effect of supplemental vitamin E on the peripheral blood leukocyte population in Japanese black calves. Journal of Veterinary Medical Science. 2015;77(8):985-988. https://doi.org/10.1292/jvms.15-0060
65. Otomaru К., Miyahara T., Saita H., Yamauchi Sh., Nochi T. Effects of vitamin E supplementation on serum oxidative stress biomarkers, antibody titer after live bovine respiratory syncytial virus vaccination, as well as serum and fecal immunoglobulin A in weaned Japanese Black calves. Journal of Veterinary Medical Science. 2022;84(8):1128-1133. https://doi.org/10.1292/jvms.22-0170
66. Rajaraman V., Nonnecke B. J., Franklin S. T., Hammel D. C., Horst R. L. Effects of vitamin A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. Journal of Dairy Science. 1999;81(12):3278-3285. https://doi.org/10.3168/jds.S0022-0302(98)75892-8
67. Carter J. N., Gill D. R., Krehbiel C. R., Confer A. W., Smith R. A., Lalman D. L., Claypool P. L., McDowell L. R. Vitamin E supplementation of newly arrived feedlot calves. Journal of Animal Science. 2005;83(8):1924-1932. https://doi.org/10.2527/2005.8381924x
68. Urban-Chmiel R., Hola P., Lisiecka U., Wernicki A., Puchalski A., Dec M., Wysocka M. An evaluation of the effects of α-tocopherol and ascorbic acid in bovine respiratory disease complex occurring in feedlot calves after transport. Livestock Science. 2011;141(1):53-58. https://doi.org/10.1016/J.LIVSCI.2011.05.003
69. Waldner C. L., Uehlinger F. D. Factors associated with serum vitamin A and vitamin E concentrations in beef calves from Alberta and Saskatchewan and the relationship between vitamin concentrations and calf health outcomes. Canadian Journal of Animal Science. 2017;97(1):65-82. https://doi.org/10.1139/cjas-2016-0055
70. Wernicki A., Stachura R., Hola P., Puchalski A., Dec M., Stęgierska D., Zurek A., Urban-Chmiel R. Efficacy of florfenicol and flunixin followed with vitamin E and/or C on selected oxidative and inflammatory mechanisms in young cattle under transport and adaptation stress. Medycyna Weterynaryjna. https://doi.org/;74(4):266-271.DOI: https://doi.org/10.21521/mw.6090
71. Sultana J. R., Chandra A. S., Ramana D. B. V., Raghunandan T., Prakash M. G., Venkateswarlu M. Effect of supplemental chromium, vitamin E and selenium on biochemical and physiological parameters of Holstein Friesian calves under heat stress. Indian Journal of Animal Research. 2022;56(8):921-927. https://doi.org/10.18805/IJAR.B-4525
72. Cipriano J. E., Morrill J. L., Anderson N. V. Effect of dietary vitamin E on immune responses of calves. Journal of Dairy Science; 1982;65(12):2357-2365. https://doi.org/10.3168/jds.S0022-0302(82)82509-5
73. Samanta A. K., Dass R. S., Rawat M., Mishra S. C., Mehra U. R. Effect of dietary vitamin E supplementation on serum α-tocopherol and immune status of crossbred calves. Asian-Australasian Journal of Animal Sciences. 2006;19(4):500-506. https://doi.org/10.5713/ajas.2006.500
74. Majlesi A., Yasini S. P., Azimpour S., Mottaghian P. Evaluation of oxidative and antioxidant status in dairy calves before and after weaning. Bulgarian Journal of Veterinary Medicine. 2021;24(2):184-190. https://doi.org/10.15547/bjvm.2270
75. Dersjant-Li Y., Jensen S. K., Bos L. W., Peisker M. R. Bio-discrimination of α-tocopherol Stereoisomers in Rearing and Veal Calves Fed Milk Replacer Supplemented with All-rac-α-tocopheryl acetate. International Journal for Vitamin and Nutrition Research. 2009;79(4):199-211. https://doi.org/10.1024/0300-9831.79.4.199
76. Lashkari S., Jensen S. K., Vestergaard M. Response to different sources of vitamin E orally injected and to various doses of vitamin E in calf starter on the plasma vitamin E level in calves around weaning. Animal. 2022;16(4):100492. https://doi.org/10.1016/j.animal.2022.100492
77. Kalač P. Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review. Journal of Agrobiology. 2012;29(1):1-13. https://doi.org/10.2478/v10146-012-0001-7
78. Hemme T., Fagerbeg A., Boelling D., Saha A., Schmeer M., Kühl R., Schier A. Cost component. In IFCN dairy report 2016 (ed. IFCN). IFCN, Kiel, Germany, 2016. pp. 44-45.
79. Chagas L. M., Bass J. J., Blache D., Burke C. R., Kay J. K., Lindsay D. R., Lucy M. C., Martin G. B., Meier S., Rhodes F. M., Roche J. R., Tchatcher W. W., Webb R. Invited review: New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. Journal of Dairy Science. 2007;90(9):4022-4032. https://doi.org/10.3168/jds.2006-852
80. De Bie J., Langbeen A., Verlaet A., Florizoone F., Immig I., Hermans N., Fransen E., Bols P., Leroy J. The effect of a negative energy balance status on β-carotene availability in serum and follicular fluid of nonlactating dairy cows. Journal of Dairy Science. 2016;99(7):5808-5819. https://doi.org/10.3168/jds.2016-10870
81. Celi P., Gabai G. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Frontiers in Veterinary Science. 2015;2(9):48. https://doi.org/10.3389/fvets.2015.00048
82. Politis I., Theodorou G., Lampidonis A. D., Kominakis A., Baldi A. Short communication: Oxidative status and incidence of mastitis relative to blood α-tocopherol concentrations in the postpartum period in dairy cows. Journal of Dairy Science. 2012;95(12):7331-7335. https://doi.org/10.3168/jds.2012-5866
83. Baldi A., Savoini G., Pinotti L., Monfardini E., Cheli F., DellOrto V. Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. Journal of Veterinary Medicine Series A. 2000;47(10):599-608. https://doi.org/10.1046/j.1439-0442.2000.00323.x
84. Chandra G., Aggarwal A., Kumar M. S., Singh A. K., Sharma V. K., Upadhyay R. C. Effect of additional vitamin E and zinc supplementation on immunological changes in péripartum Sahiwal cows. Journal of Animal Physiology and Animal Nutrition. 2014;98(6):1166-1175. https://doi.org/10.1111/jpn.12190
85. Bayril T., Yildiz A. S., Akdemir F., Yalcin C., Köse M., Yilmaz O. The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australasian Journal of Animal Sciences. 2015;28(8):1133-1139. https://doi.org/10.5713/ajas.14.0960
86. Politis I. Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality. Animal. 2012;6(9):1427-1434 https://doi.org/10.1017/S1751731112000225
87. Goff J. P., Kimura K., Horst R. L. Effect of mastectomy on milk fever, energy, and vitamins A, E, and betacarotene status at parturition. Journal of Dairy Science. 2002;85(6):1427-1436. https://doi.org/10.3168/jds.S0022-0302(02)74210-0
88. Sordillo L. M. Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Production Science. 2005;98(1-2):89-99. https://doi.org/10.1016/j.livprodsci.2005.10.017
89. Herdt T. H., Smith J. C. Blood-lipid and lactation-stage factors affecting serum vitamin E concentrations and vitamin E cholesterol ratios in dairy cattle. Journal of Veterinary Diagnostic Investigation. 1996;8(2):228-232. https://doi.org/10.1177/104063879600800213
90. Qu Y., Lytle K., Traber M. G., Bobe G. Depleted serum vitamin E concentrations precede left displaced abomasum in early-lactation dairy cows. Journal of Dairy Science. 2013;96(5):3012-3022. https://doi.org/10.3168/jds.2012-6357
91. Weiss W. P., Hogan J., Wyatt D. Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total a-tocopherol and isomer concentrations in periparturient dairy cows and their calves. Journal of Dairy Science. 2009;92(2):720-731. https://doi.org/10.3168/jds.2008-1635
92. Ingvartsen K. L. Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feedingrelated diseases. Animal Feed Science and Technology. 2006;126(3-4):175-213. https://doi.org/10.1016/j.anifeedsci.2005.08.003
93. LeBlanc S. Monitoring metabolic health of dairy cattle in the transition period. Journal of Reproduction and Development. 2010;56(S):S29-S35. https://doi.org/10.1262/jrd.1056s29
94. Leroy J., Rizos D., Sturmey R., Bossaert P., Gutierrez-Adan A., Van Hoeck V., Valckx S., Bols P. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reproduction, Fertility and Development. 2011;24(1):1-12. https://doi.org/10.1071/RD11901
95. Spears J. W., Weiss W. P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal 2008;176(1):70-76. https://doi.org/10.1016/j.tvjl.2007.12.015
96. Weiss W. P., Hogan J. S., Todhunter D. A., Smith K. L. Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. Journal of Dairy Science. 1997;80(8):1728-1737. https://doi.org/10.3168/jds.S0022-0302(97)76105-8
97. Waller P. K., Sandgren H. C., Emanuelson U., Jensen S. K. Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. Journal of Dairy Science. 2007;90(8):3640-3646. https://doi.org/10.3168/jds.2006-421
98. Suwanpanya N., Wongpratoom W., Wanapat M., Aiumlamai S., Wittayakun S., Wachirapakom C. The influence of bovine neutrophils on in vitro phagocytosis and killing of Staphylococcus aureus in heifers supplemented with selenium and vitamin E. Songklanakarin. Journal of Science and Technology. 2007;29(3):697-706. URL: https://www.researchgate.net/publication/26469202
99. Belanche A., Kingston-Smith A. H., Newbold C. J. An integrated multi-omics approach reveals the effects of supplementing grass or grass hay with vitamin E on the rumen microbiome and its function. Frontiers in Microbiology. 2016;7:905. https://doi.org/10.3389/fmicb.2016.00905
100. Koenig K. M., Newbold C. J., McIntosh F. M., Rode L. M. Effects of protozoa on bacterial nitrogen recycling in the rumen1. Journal of Animal Science. 2000;78(9):2431-2445. https://doi.org/10.2527/2000.7892431x
101. Naziroğlu M., Güler T., Yüce A. Effect of vitamin E on ruminal fermentation in vitro. Journal of Veterinary Medicine Series A. 2002;49(5):251-255. https://doi.org/10.1046/j.1439-0442.2002.00418.x
102. Wu Z., Guo Y., Zhang J., Deng M., Xian Z., Xiong H., Liu D., Sun B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals. 2023;13(3):486. https://doi.org/10.3390/ani13030486
103. Juárez M., Dugan M. E., Aalhus J. L., Aldai N., Basarab J. A., Baron V. S., McAllister T. A. Effects of vitamin E and flaxseed on rumen-derived fatty acid intermediates in beef intramuscular fat. Meat Science. 2011;88(3):434-440. https://doi.org/10.1016/j.meatsci.2011.01.023
104. Hartmann M. S., Mousavi S., Bereswill S., Heimesaat M. M. Vitamin E as promising adjunct treatment option in the combat of infectious diseases caused by bacterial including multi-drug resistant pathogens - Results from a comprehensive literature survey. European Journal of Microbiology and Immunology. 2020;10(4):193-201. https://doi.org/10.1556/1886.2020.00020
105. Hosain M. Z., Kabir S. M. L., Kamal M. M. Antimicrobial uses for livestock production in developingcountries. Veterinary World. 2021;14(1):210-221. https://doi.org/10.14202/vetworld.2021.210-221
Рецензия
Для цитирования:
Туаева Е.В. Витамин Е в кормлении молочного скота (обзор). Аграрная наука Евро-Северо-Востока. 2024;25(5):770–784. https://doi.org/10.30766/2072-9081.2024.25.5.770-784
For citation:
Tuaeva E.V. Vitamin E in dairy cattle feeding (review). Agricultural Science Euro-North-East. 2024;25(5):770–784. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.5.770-784
ISSN 2500-1396 (Online)