Preview

Agricultural Science Euro-North-East

Advanced search

Biotesting of titanium tetrapolyethylene glycolate in 10 molar excess on granulosa cell culture of porcine follicles

https://doi.org/10.30766/2072-9081.2024.25.5.920-929

Abstract

The effect of titanium tetrapolyethylene glycolate dissolved in polyethylene glycol (ratio 1:10) (abbreviated TTPEG*10PEG) on granulosa cells (GC) of the antral ovarian follicles of Sus scrofa domesticus in the dynamics of in vitro culture was assessed. Granulosa cells aspirated from post mortem ovarian porcine follicles (ø 3-5 mm) obtained at the Tosnensky Meat Processing Plant, were cultured without and in the presence of 0.1, 0.01 and 0.001 % TTPEG*10PEG.  After 22 and 44 hours, the GC were analyzed by flow cytometry. A comprehensive analysis of viability indicators (mitochondrial activity, apoptosis), as well as the generation of reactive oxygen species (ROS) in the GC after exposure to TTPEG*10PEG, revealed that the addition of 0.1 % TTPEG*10PEG to the culture medium after 22 and 44 hours causes disturbances in the functional activity of the GC, accompanied by a decrease of mitochondrial membrane potential compared to control (by 8 and 9 %, respectively, p<0.05) and cell death (the proportion of cells in apoptosis was 45 and 41 %, respectively, p<0.001). In the groups cultured in the presence of 0.01 % and 0.001 % TTPEG*10PEG, no significant differences in the level of GC in the state of apoptosis were detected when cultured for either 22 or 44 hours. At the same time, an increase in mitochondrial  activity was shown in these groups in comparison with the control and the group containing 0.1 % TTPEG*10PEG (by 11 and 13 %, respectively, after 22 hours, p<0.001 and by 15 and 27 % after 44 hours, p< 0.001). No significant differences were found between the study groups in the rate of ROS generation in cells. In general, a dose-dependent negative effect  of TTPEG*10PEG (0.1 %) was identified. TTPEG*10PEG at concentrations of 0.01 and 0.001% did not have a destructive effect on the studied cell population, which indicates the possibility of using TTPEG*10PEG at the above concentrations (0.01 and 0.001 %) to simulate the composition of media used in porcine granulosa cells culture systems.

About the Authors

A. O. Prituzhalova
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Anna O. Prituzhalova, junior researcher, the Laboratory of Developmental Biology

Moscow highway, 55a, village Tyarlevo, St. Petersburg, 196625



T. I. Kuzmina
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Tatyana I. Kuzmina, DSc in Biological Science, professor, chief researcher, Head of the Laboratory of Developmental Biology

Moscow highway, 55a, village Tyarlevo, St. Petersburg, 196625



T. G. Khonina
I. Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Tatiana G. Khonina, DSc in Chemistry, senior researcher, leading researcher at the Laboratory of Organic Materials

st. Sofia Kovalevskaya, 22/20, Ekaterinburg, 620108



U. S. Nikulina
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Ulyana S. Nikulina, biologist, the Laboratory of Developmental Biology

Moscow highway, 55a, village Tyarlevo, St. Petersburg, 196625



References

1. Kuzmina T. I., Chistyakova I. V., Prituzhalova A. O., Tatarskaya D. N. The role of highly dispersed silica nanoparticles in the realization of the effects of granulosa on the maturation and fertilization competence of Sus scrofa domesticus. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(3):234–239. (In Russ.). DOI: https://doi.org/10.18699/VJGB-22-30

2. Kuzmina T. I., Novichkova D. A., Volkova N. A. Modelling of maturation systems for porcine oocyte in vitro. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2013;48(2):52–57. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2013.2.52rus

3. Khonina T. G., Safronov A. P., Ivanenko M. V., Chupakhin O. N., Pushin V. G. Titanium polyethylene glycolates and hydrogels on the basis of the glycolates. Izvestiya Akademii nauk. Seriya khimicheskaya = Russian Chemical Bulletin. 2014;(7):1639–1642. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=22593634

4. Khonina T. G., Safronov A. P., Ivanenko M. V., Shadrina E. V., Chupakhin O. N. Features of silicon– and titanium–polyethylene glycol precursors in sol–gel synthesis of new hydrogels. Journal of Materials Chemistry B. 2015;3(27):5490–5500. DOI: https://doi.org/10.1039/c5tb00480b

5. Li D., Zhou J., Zhang M., Ma Y., Yang Y., Han X., Wang X. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomaterials Science. 2020;8:3138–3146. DOI: https://doi.org/10.1039/d0bm00376j

6. Zhu T., Wang H., Jing Z., Fan D., Liu Z., Wang X., Tian Yu. High efficacy of tetra-PEG hydrogel sealants for sutureless dural closure. Bioactive Materials. 2022;8:12–19. DOI: https://doi.org/10.1016/j.bioactmat.2021.06.022

7. Chang S., Li C., Xu N., Wang J., Jing Z., Cai H., Tian Y., Wang S., Liu Z., Wang X. A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Frontiers in Bioengineering and Biotechnology. 2022;10:961227. DOI: https://doi.org/10.3389/fbioe.2022.961227

8. Villalpando-Rodriguez G. E., Gibson S. B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxidative Medicine and Cellular Longevity. 2021;(1):9912436. DOI: https://doi.org/10.1155/2021/9912436

9. Rems L., Viano M., Kasimova M. A., Miklavčič D., Tarek M. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study. Bioelectrochemistry. 2019;125:46–57. DOI: https://doi.org/10.1016/j.bioelechem.2018.07.018

10. Banerjee A., Chattopadhyay A., Bandyopadhyay D. Melatonin and biological membrane bilayers: a never ending amity. Melatonin Research. 2021;4(2): 232–252. DOI: https://doi.org/10.32794/mr11250093

11. Dikalov S., Harrison D. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxidants & Redox Signaling. 2014;20(2):372–382. DOI: https://doi.org/10.1089/ars.2012.4886

12. Carafa V., Russo R., Della Torre L., Cuomo F., Dell'Aversana C., Sarno F., et al. The Pan-Sirtuin Inhibitor MC2494 Regulates Mitochondrial Function in a Leukemia Cell Line. Frontiers in Oncology. 2020;10:00820. DOI: https://doi.org/10.3389/fonc.2020.00820

13. Okata S., Hoshina K., Hanada K., Kamata H., Fujisawa A., Yoshikawa Y., Sakai T. Hemostatic capability of a novel tetra-polyethylene glycol hydrogel. Аnnals of Vascular Surgery. 2022;84:398–404. DOI: https://doi.org/10.1016/j.avsg.2022.01.016

14. Buxadera-Palomero J., Calvo C., Torrent-Camarero S., Gil F. J., Mas-Moruno C., Canal C., Rodriguez D. Biofunctional polyethylene glycol coatings on titanium: an in vitro -based comparison of functionalization methods. Colloids and Surfaces B: Biointerfaces. 2017;152:367–375. DOI: https://doi.org/10.1016/j.colsurfb.2017.01.042

15. Chupakhin O. N., Khonina T. G., Kungurov N. V., Zilberberg N. V., Evstigneeva N. P., Kokhan M. M., Polishchuk A. I., Shadrina E. V., Larchenko E. Yu., Larionov L. P., Karabanalov M. S. Silicon–boron-containing glycerohydrogel having wound healing, regenerative, and antimicrobial activity. Izvestiya Akademii nauk. Seriya khimicheskaya = Russian Chemical Bulletin. 2017;(3):558–563. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=28862630

16. Barkova A. S., Shurmanova E. I., Khonina T. G., Millstein I. M. Possibilities of using functional biologically active organosilicon compounds in veterinary practice. Agrarian Bulletin of the Urals. 2020;(11(202)):53–58. DOI: https://doi.org/10.32417/1997-4868-2020-202-11-53-58

17. Camaioni A., Massimiani M., Lacconi V., Magrini A., Salustri A., Sotiriou G. A., et al. Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion. Particle and Fibre Toxicology. 2021;18(1):33. DOI: https://doi.org/10.1186/s12989-021-00424-z

18. Lei R., Bai X., Chang Y., Li J., Qin Y., Chen K., et al. Effects of fullerenol nanoparticles on rat oocyte meiosis resumption. International Journal of Molecular Sciences. 2018;19(3):699. DOI: https://doi.org/10.3390/ijms19030699

19. Tiedemann D., Taylor U., Rehbock C., Jakobi J., Klein S., Kues W. A., et al. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. The Analyst. 2014;139(5):931–942. DOI: https://doi.org/https://doi.org/10.1039/c3an01463k

20. Minghui F., Ran S., Yuxue J., Minjia S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Frontiers in Bioengineering and Biotechnology. 2023;11:1183592. DOI: https://doi.org/10.3389/fbioe.2023.1183592

21. Groll J., Fiedler J., Engelhard E., Ameringer T., Tugulu S., Klok H. A., et al. A novel star PEG-derived surface coating for specific cell adhesion. Journal of Biomedical Materials Research. 2005;74A(4):607–617. DOI: https://doi.org/10.1002/jbm.a.30335


Review

For citations:


Prituzhalova A.O., Kuzmina T.I., Khonina T.G., Nikulina U.S. Biotesting of titanium tetrapolyethylene glycolate in 10 molar excess on granulosa cell culture of porcine follicles. Agricultural Science Euro-North-East. 2024;25(5):920–929. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.5.920-929

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)