Effectiveness analysis of surface reservoirs environmental monitoring methods in conditions of their eutrophication by agricultural facilities (review)
https://doi.org/10.30766/2072-9081.2024.25.6.969-987
Abstract
The high level of anthropogenic impact on the soils of arable lands and pastures has led to their inability to retain and decompose pollutants, including biogenic substances, transported with water. At the same time, agricultural facilities deserve special attention, which on the one hand are the largest water consumers worldwide, and on the other hand make a significant contribution to the biogenic pollution of surface waters. Due to the stable biogenic saturation of reservoirs, there is a threat of a widespread increase in phytoplankton biomass, which significantly affects the quality of water resources. Despite the existing measures to combat this phenomenon, the issue of water bodies environmental monitoring is open in conditions of eutrophication. The article provides a brief description of the most unfavorable agricultural facilities in terms of biogenic load on reservoirs. The features of the biogenic saturation mechanism of the aquatic environment from agricultural territories are considered. The article highlights the main methods of environmental monitoring of the aquatic environment, provides a brief description of their effectiveness in conditions of eutrophication, and provides an overview of innovative methods and technical solutions in the field under consideration. The author focuses attention on the need to create integrated environmental monitoring systems for water bodies that combine the useful properties of its three main methods (physico-chemical, biological and remote), as well as taking into account the process of eutrophication, including from agricultural facilities. The development of such complexes will expand the functionality, improve the quality and efficiency of environmental monitoring of surface waters located near agricultural facilities.
Keywords
About the Author
A. S. NevaevRussian Federation
Alexey S. Nevaev, post-graduate student
L. Tolstoy St., 42, Ulyanovsk
References
1. Koronkevich N. I., Barabanova E. A., Zaytseva I. S. Assessment of current water consumption in the world and on continents, its impact on annual river flow. Vestnik Rossiyskoy akademii nauk = Herald of the Russian Academy of Sciences. 2022;92(3):256–264. (In Russ.). DOI: https://doi.org/10.31857/S0869587322030057
2. Gorskaya O. Yu. Improvement of methods of algolization and biomelioration of the Rostov NPP cooling pond and the near dam part of the Tsimlyansk reservoir. Global'naya yadernaya bezopasnost' = Global Nuclear Safety. 2023;(2):14–23. (In Russ.). DOI: https://doi.org/10.26583/gns-2023-02-02
3. Smirnova V. S., Tekanova E. V., Kalinkina N. M., Chernova E. N. Phytoplankton state and cyanotoxins in the Svyatozero lake bloom spot (Onega lake basin, Russia). Voda i ekologiya: problemy i resheniya = Water and Ecology: Problems and Solutions. 2021;(1(85)):50–60. (In Russ.). DOI: https://doi.org/10.23968/2305-3488.2021.26.1.50-60
4. Kumykov M. Z. Eutrophication of fish-husbandry water reservoir and ways of its prophylaxis. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta = Izvestia Orenburg State Agrarian University. 2008;3(19-1):216–217. (In Russ.). URL: https://elibrary.ru/item.asp?id=14627281
5. Melikhov V. V., Frolova M. V., Zibarov A. A., Moskovets M. V. Environmental assessment of modern biotechnology improve the quality of irrigation water for agricultural lands of the Volga-Don interfluve. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie = Proceedingsof Nizhnevolzskiy Agrouniversity Complex: Science and Higher Vocational Education. 2019;(3):94–101. (In Russ.). URL: https://elibrary.ru/item.asp?id=41321235
6. Mamas' N. N., Gorbenko A. Yu., Kudenko D. V.Ccurrent approaches to ecological and hydrogeological monitoring of water bodies. Puti povysheniya effektivnosti oroshaemogo zemledeliya. 2023;(3):151–160. (In Russ.). URL: https://www.rosniipm-sm1.ru/article?n=244
7. Kutyavina T. I., Ashikhmina T. Ya. Current state and problems of monitoring of surface water bodies in Russia (review). Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2021;(2):13–21. (In Russ.). DOI: https://doi.org/10.25750/1995-4301-2021-2-013-021
8. Potapov V. P., Kuzmin D. G., Serous T. O. Scientific and practical foundations of the digital Uskat project and specific features of its implementation. Ugol'. 2022;(11):40–47. (In Russ.). DOI: https://doi.org/10.18796/0041-5790-2022-11-40-47
9. Amashukeli S. A. Development of digitalization in the field of use and protection of water bodies. Aktual'nye problemy rossiyskogo prava = Actual Problems of Russian Law. 2022;17(3):177–187. (In Russ.). DOI: https://doi.org/10.17803/1994-1471.2022.136.3.177-187
10. Vtoryy V. F., Vtoryy S. V. Prospects for environmental monitoring of agricultural facilities using unmanned aerial vehicles. AgroEkoInzheneriya = Agricultural Engineering (Moscow). 2017;(92):158–166. (In Russ.). URL: https://elibrary.ru/item.asp?id=30258921
11. Shevyrnogov A. P., Vysotskaya G. S., Pisman T. I., Kononova N. A., Botwich I. Yu. Perspective for global and regional monitoring of phytopigment dynamics in the ocean and land by earth remote sensing. Zhurnal Sibirskogo federal'nogo universiteta. Tekhnika i tekhnologii = Journal of Siberian Federal University. Engineering & Technologies. 2023;16(1):104–114. (In Russ.). URL: https://elibrary.ru/item.asp?id=50245730
12. Kutyavina T. I., Rutman V. V., Ashikhmina T. Ya., Savinykh V. P. The use of satellite images to determine the boundaries of water bodies and study the processes of eutrophication. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2019;(3):28–33. (In Russ.). DOI: https://doi.org/10.25750/1995-4301-2019-3-028-033
13. Kireycheva L. V., Lentyaeva E. A. The influence of agricultural production on pollution of water bodies. Prirodoobustroystvo = Prirodoobustrojstvo. 2020;(5):18–26. (In Russ.). DOI: https://doi.org/10.26897/1997-6011/2020-5-18-27
14. Kireycheva L. V., Lentyaeva E. A. Assessment of the quantity and quality of drainage and surface waters entering the river network of the Volga River basin from drainage systems of the non-chernozem zone of the Russian Federation. Land reclamation is an integral part of the formation and development of the agro–industrial complex of the Non-Chernozem zone of the Russian Federation: Proceedings of the international scientific and practical conf. Moscow: VNII gidrotekhniki i melioratsii imeni A. N. Kostyakova, 2019. pp. 215–221.
15. Kireycheva L. V., Yashin V. M., Lentyaeva E. A., Timoshkin A. D. Assessment of diffuse pollution with biogenic substances from agricultural lands in the Yakhroma River basin (Moscow region). Scientific problems of improving Russian rivers and ways to solve them: collection of scientific articles. Мoscow: Studiya F1, 2019. pp. 379–384. URL: https://www.elibrary.ru/frxpcc
16. Dzhumabaev M. S. Environmental monitoring of environmental objects: the essence of the concept. AgroEkoInfo. 2023;(3):7. (In Russ.). URL: https://elibrary.ru/item.asp?id=54181337
17. Boldanova E. V. Evaluation of the trophic status of lake Baikal using remote sensing. Geograficheskiy vestnik = Geographical Bulletin. 2022;(2(61)):73–89. (In Russ.). DOI: https://doi.org/10.17072/2079-7877-2022-2-73-89
18. Babich O. O., Rada A. O., Kulikova Yu. V., Sukhikh S. A. Study of coastal waters eutrophication level of Gdansk bay (Baltic sea) using earth remote sensing data. Izvestiya vysshikh uchebnykh zavedeniy. SeveroKavkazskiy region. Seriya: Estestvennye nauki = Bulletin of Higher Education Institutes North Caucasus Region. Natural Sciences. 2023;(1(217)):35–42. (In Russ.). DOI: https://doi.org/10.18522/1026-2237-2023-1-35-42
19. Sherstobitov D. N., Ermakov V. V., Pystin V. N., Tupitsyna O. V. Monitoring of the development of bluegreen algae in the Kuibyshev reservoir using remote sensing indices. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti = RUDN Journal of Ecology and Life Safety. 2023;31(2):232–240. (In Russ.). DOI: https://doi.org/10.22363/2313-2310-2023-31-2-232-240
20. Kurganovich K. A. The satellite monitoring of eutrophication processes in a section of the transboundary Argun (Khailar) river using the surface algal bloom index (SABI) according to LANDSAT remote sensing data. Vestnik Zabaykal'skogo gosudarstvennogo universiteta = Transbaikal State University Journal. 2022;28(7):26–33. (In Russ.). DOI: https://doi.org/10.21209/2227-9245-2022-28-7-26-33
21. Gogolev D. G., Bukanova T. V., Kudryavtseva E. A. Kontsentratsiya khlorofilla «a» v yugo-vostochnoy chasti Baltiyskogo morya letom 2018 goda po sputnikovym dannym. Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta. Seriya: Estestvennye i meditsinskie nauki = IKBFU's Vestnik. Series: Natural and Medical Sciences. 2020;(4):83–91. (In Russ.). URL: https://elibrary.ru/item.asp?id=44392366
22. Panasenko N. D., Ganzhur M. A., Ganzhur A. P. Multichannel satellite image application for water surface objects identification. Inzhenernyy vestnik Dona = Engineering Journal of Don. 2020;(12(72)):376–387. (In Russ.). URL: https://elibrary.ru/item.asp?id=44760082
23. Kalitov M. A. About the application of multispectral visualization in earth remote sensing. Vestnik Novgorodskogo gosudarstvennogo universiteta. 2024;(1(135)):95–107. (In Russ.). DOI: https://doi.org/10.34680/2076-8052.2024.1(135).95-107
24. Arslanova M. M., Shornikova E. A., Muzieva M. I. The analysis of spatio-temporal features of microbiological and hydrochemical indicators of the rivers within Surgutsky and Oktyabrsky districts in Khanty-Mansi autonomous okrug – Yugra. Samarskiy nauchnyy vestnik = Samara Journal of Science. 2020;9(2):15–19. (In Russ.). DOI: https://doi.org/10.17816/snv202102
25. Gudkova N. K., Gorbunova T. L., Matova N. I. Influence of MSW landfills on degradation of biogeocenoses of coastal zones of water courses and the Black sea. Prirodoobustroystvo = Prirodoobustrojstvo. 2021;(5):117–124. (In Russ.). DOI: https://doi.org/10.26897/1997-6011-2021-5-117-124
26. Sveshnikova E. V., Romanova E. M., Lyubomirova V. N., Romanov V. V., Shlenkina T. M., Sergatenko S. N. Assessment of ecological processes in the Sviyaga river (Ulyanovsk region). Ul'yanovskiy mediko-biologicheskiy zhurnal = Ulyanovsk Medico-biological Journal. 2024;(1):130–147. (In Russ.). DOI: https://doi.org/10.34014/2227-1848-2024-1-130-147
27. Khotimchenko S. A., Gmoshinskiy I. V., Bagryantseva O. V., Shatrov G. N. Chemical food safety: development of methodological and regulatory base. Voprosy pitaniya = Problems of Nutrition. 2020;89(4):110–124. (In Russ.). DOI: https://doi.org/10.24411/0042-8833-2020-10047
28. Samoylov A. V., Suraeva N. M. Prospects for the use of plant biotesting to search for metabolic biomarkers of the toxic potential of components of food matrices (review). Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2021;35(4):65–71. (In Russ.). DOI: https://doi.org/10.24411/0235-2451-2021-10411
29. Slaykovskaya E. S., German N. V. The assessment of the ecological state of the reservoir in the Spring valley of Volgograd. Samarskiy nauchnyy vestnik = Samara Journal of Science. 2022;11(2):120–123. (In Russ.). DOI: https://doi.org/10.55355/snv2022112117
30. Nikolaeva A. V., Rodkin M. M., Kulishin A. V., Davletyarov R. R. A method of environmental monitoring using aquaculture: Patent RF, no. 2758337, 2021. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
31. Gaysin M. T., Rodkin M. M. A method for conducting environmental monitoring using biological test objects: Patent RF, no. 2802195, 2023. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
32. Shatokhin A. V., Seleznev I. A., Ivakin Ya. A., Grekov A. N., Grekov N. A., Korovin A. N. Automated biosensor early warning system for environmental monitoring of the aquatic environment: Patent RF, no. 2779728, 2022. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
33. Trusevich V. V., Zhuravskiy V. Yu. Experience with freshwater bivalve mollusks (unio pictorum) as biosensors in systems for automated biosensor control of oil pollution of waters in systems water supply for the population. Ekosistemy. 2023;34:193–198. (In Russ.). URL: https://elibrary.ru/item.asp?id=54133550
34. Polyak Yu. M., Sukharevich V. I. Toxic cyanobacteria: their occurrence, regulation of toxin production and control. Voda: khimiya i ekologiya = Water: Chemistry and Ecology. 2017;(11-12):125–139. (In Russ.). URL: https://www.elibrary.ru/item.asp?edn=yuujjo&ysclid=lx0so1t463913884664
35. Stonik I. V., Orlova T. Yu. The seasonal accumulation of amnesic toxin (domoic acid) in commercial bivalves mytilus trossulus gould, 1850 and mizuhopecten yessoensis jay, 1850 in Vostok bay, sea of Japan. Biologiya morya = Russian Journal of Marine Biology. 2020;46(1):70–72. (In Russ.). DOI: https://doi.org/10.31857/S0134347520010106
36. Wu Sh.-J. Multi-location time-division water quality monitoring system: Patent US, no. 20220082546, 2020. URL: https://searchplatform.rospatent.gov.ru/doc/US20220082546A1_20220317?q=Multi-location%20timedivision%20water%20quality%20monitoring%20system&from=search_simple&hash=2009640586
37. Brazhnikova A. M., Brazhnikov A. M. Autonomous underwater vehicle of the "micro" class for monitoring the ecological status of small reservoirs: the utility model RF, No. 205389, 2021. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
38. Novikov A. E., Melikhov V. V., Medvedeva L. N., Kostin V. E., Moskovets M. V., Toropov A. Yu. Water craft for monitoring natural and artificial reservoirs: the utility model RF, No. 215787, 2022. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
39. Vorobev S. N., Lushchaeva I. V., Pokrovskiy O. S., Sorochinskiy A. V. A device for determining the hydrochemical and physical parameters of the aquatic environment: the utility model RF, No. 210918, 2022. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
40. Okhrimenko S. N., Okhrimenko N. S., Rubanov I. L. Universal buoy for environmental monitoring of reservoirs: Patent RF, no. 2796989, 2023. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
41. Voronich S. S., Roeva N. N., Khlopaev A. G. Organization of observations of natural water quality in the Moscow region. Problemy regional'noy ekologii = Regional Environmental Issues. 2024;(1):81–84. (In Russ.). DOI: https://doi.org/10.24412/1728-323X-2024-1-81-84
42. Trofimchuk M. M. Entropy index: new opportunities in assessing the ecological state of aquatic ecosystems. Meteorologiya i gidrologiya. 2020;(11):46–52. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=44665531
43. Trofimchuk M. M. A method for assessing the ecological status of water bodies: Patent RF, no. 2721713, 2020. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
44. Trofimchuk M. M. Practical implementation of the entropy index in assessing the ecological state of water ecosystems. Vodnoe khozyaystvo Rossii: problemy, tekhnologii, upravlenie = Water Sector of Russia: Problems, Technologies, Management. 2024;(2):23–37. (In Russ.). DOI: https://doi.org/10.35567/19994508-2024-2–23–37
45. Nekrasova L. P. Monitoring of natural water pollution by fluorescence spectroscopy. Gigiena i sanitariya = Hygiene and Sanitation. 2022;101(5):578-582. (In Russ.). DOI: https://doi.org/10.47470/0016-9900-2022-101-5-578-582
46. Plotnikova O. A., Tikhomirova E. I., Melnikov G. V. Comparative analysis of fluorescent methods selectivity for ecotoxicants environmental monitoring. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti = RUDN Journal of Ecology and Life Safety. 2022;30(4):574–583. (In Russ.). DOI: https://doi.org/10.22363/2313-2310-2022-30-4-574-583
47. Temerdashev Z. A., Pavlenko L. F., Ermakova Ya. S., Korpakova I. G., Eletskiy B. D. Extractionfluorimetric determination of chlorophyll "a" in the natural waters. Analitika i kontrol'. 2019;23(3):323–333. (In Russ.). DOI: https://doi.org/10.15826/analitika.2019.23.3.001
48. Yang W. S., Lee S. Q., Je Ch. H., Hwang G., Lee H. K., Seok Ya. W., et al. Fluorescence sensor for measuring microalgae and method of operating the same: Patent US, no. №20200191695, 2020. URL: https://searchplatform.rospatent.gov.ru/doc/US20200191695A1_20200618?q=Fluorescence%20sensor%20for%20measuring%20microalgae%20and%20method%20of%20operating%20the%20same&from=search_simple&hash=971709134
49. Goltsev V. N., Kaladzhi M. Kh., Kuzmanova M. A., Allakhverdiev S. I. Variable and delayed fluorescence of chlorophyll "a" – theoretical foundations and practical application in plant research. Izhevsk: Institut komp'yuternykh issledovaniy, 2014. 220 p.
50. Krikun V. A., Salyuk P. A. Autonomous underwater fluorimeter probe: Patent RF, no. 2753651, 2021. URL: https://www1.fips.ru/registers-doc-view/fips_servlet
51. Qin B., Wu T., Zhu G., Zhang Yu., Li W. Stereoscopic monitoring and data mining system and method for harmful lake cyanobacteria bloom: Patent US, no. 11402362, 2022. URL: https://searchplatform.rospatent.gov.ru/doc/US0011402362B2_20220802?q=Stereoscopic%20monitoring%20and%20data%20mining%20system%20and%20method%20for%20harmful%20lake%20cyanobacteria%20bloom&from=search_simple&hash=134466233
52. Golushkov N. A., Kokuev A. G. Integrated platform for monitoring fish farm aquatic environment. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika i informatika = Vestnik of Astrakhan State Technical University. Series: Management, Computer science and Informatics. 2023;(1):57–63. (In Russ.). DOI: https://doi.org/10.24143/2073-5529-2023-1-57-63
Review
For citations:
Nevaev A.S. Effectiveness analysis of surface reservoirs environmental monitoring methods in conditions of their eutrophication by agricultural facilities (review). Agricultural Science Euro-North-East. 2024;25(6):969-987. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.6.969-987