African swine fever: virus carriage and the role of surviving wild boar in the persistence and spread of infection (review)
https://doi.org/10.30766/2072-9081.2024.25.6.988-999
Abstract
The panzootic of African swine fever (ASF) in Europe and Asia caused by viruses of genotypes I and II has led to a comprehensive scientific study of the course of this infection. Researchers have noted that a certain proportion of diseased animals survive. Detection of seropositive (antibody-positive) animals in ASF-affected countries of Europe was especially noticeable in wild boar populations. The role of seropositive animals ASF survivors in the persistence and spread of infection in the population has been long and controversially debated, as they may potentially become persistently infected, acting as virus carriers. The aim of this review was to summarize the current scientific and experimental results on the chronic course of ASF in Eurasian wild boar, virus carriage and spread of infection from surviving seropositive animals. In Eurasia different forms of ASF disease are currently observed in susceptible animals: peracute, acute, subacute, less frequently chronic and asymptomatic; the latter are found to be caused by circulating ASF viruses (ASFV) of reduced virulence. Two types of survivors animals are distinguished: 1) animals that develop persistent infection with periodic viremia and signs of subacute to chronic course; 2) animals that recover completely and clear of infection. Long-term persistence and complete elimination of the virus have been observed in survivors: in the last ten years, the time of virus excretion has been experimentally determined to generally range from 35 to 99 days. Survivors of the 1st type may play a role in the spread of the ASFV due to periodic viremia. Seropositive survived animals of the 2nd type due to their small numbers are not considered by some researchers to play a significant epidemiological role in the persistence of ASFV in wild boar populations. Experimental transmission of ASFV from surviving wild boars has been studied to date to a limited extent, such research should be continued. The knowledge gained in these areas will improve the understanding of the current situation of ASF in wildlife.
Keywords
About the Authors
T. Yu. BespalovaRussian Federation
Tatiana Yu. Bespalova, deputy head of the group
Magnitogorskaya str., 8, Samara, 443013
A. A. Glazunova
Russian Federation
Anastasia A. Glazunova, deputy head of the group
Magnitogorskaya str., 8, Samara, 443013
References
1. Kosowska A., Barasona J. A., Barroso-Arévalo S., Blondeau Leon L., Cadenas-Fernández E., SánchezVizcaíno J. M. Low transmission risk of African swine fever virus between wild boar infected by an attenuated isolate and susceptible domestic pigs. Frontiers in Veterinary Science. 2023;10:1177246. DOI: https://doi.org/10.3389/fvets.2023.1177246
2. Blome S., Franzke K., Beer M. African swine fever - A review of current knowledge. Virus Research. 2020;287:198099. DOI: https://doi.org/10.1016/j.virusres.2020.198099
3. Ayanwale A., Trapp S., Guabiraba R., Caballero I., Roesch F. New Insights in the Interplay Between African Swine Fever Virus and Innate Immunity and Its Impact on Viral Pathogeniciy. Frontiers in Microbiology. 2022;13:958307. DOI: https://doi.org/10.3389/fmicb.2022.958307
4. Penrith M. L., Thomson G. R., Bastos A. D. S., Phiri O. C., Lubisi B. A., Du Plessis E. C., et al. An investigation into natural resistance to African swine fever in domestic pigs from an endemic area in southern Africa. Revue Scientifique et Technique. 2004;23(3):965–977. DOI: https://doi.org/10.20506/rst.23.3.1533
5. Feng W., Zhou L., Zhao P., Du H., Diao C., Zhang Y., et al. Comparative Genomic Analysis of Warthog and Sus Scrofa Identifies Adaptive Genes Associated with African Swine Fever. Biology. 2023;12(7):1001. DOI: https://doi.org/10.3390/biology12071001
6. Danzetta M. L., Marenzoni M. L., Iannetti S., Tizzani P., Calistri P., Feliziani F. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Frontiers in Veterinary Science. 2020;7:296. DOI: https://doi.org/10.3389/fvets.2020.00296
7. Ståhl K., Sternberg-Lewerin S., Blome S., Viltrop A., Penrith Mary-L., Chenais E. Lack of evidence for long term carriers of African swine fever virus – a systematic review. Virus Research. 2019;272:197725. DOI: https://doi.org/10.1016/j.virusres.2019.197725
8. Sanchez-Cordon P. J., Nunez A., Neimanis A., Wikstrom-Lassa E., Montoya M., Crooke H., Gavier-Widen D. African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II. Viruses. 2019;11(9):852. DOI: https://doi.org/10.3390/v11090852
9. Schulz K., Conraths F. J., Blome S., Staubach C., Sauter-Louis C. African Swine Fever: Fast and Furious or Slow and Steady? Viruses. 2019;11(9):866. DOI: https://doi.org/10.3390/v11090866
10. Blome S., Gabriel C., Dietze K., Breithaupt A., Beer M. High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerging Infectious Diseases. 2012;18(4):708. DOI: https://doi.org/10.3201/eid1804.111813
11. Gallardo C., Nurmoja I., Soler A., Delicado V., Simón A., Martin E., et al. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology. 2018;219:70–79. DOI: https://doi.org/10.1016/j.vetmic.2018.04.001
12. Zani L., Forth J. H., Forth L., Nurmoja I., Leidenberger S., Henke J., et al. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports. 2018;8:6510. DOI: https://doi.org/10.1038/s41598-018-24740-1
13. Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and nonhaemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases. 2019;66:1399–1404. DOI: https://doi.org/10.1111/tbed.13132
14. Sun E., Zhang Z., Wang Z., He X., Zhang X., Wang L., et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China. Life Sciences. 2021;64(5):752–765. DOI: https://doi.org/10.1007/s11427-021-1904-4
15. Gao H., Di D., Wu Q., Li J., Liu X., Xu Z., et al. Pathogenicity and horizontal transmission evaluation of a novel isolated African swine fever virus strain with a three-large-fragment-gene deletion. Veterinary Microbiology. 2024;290:110002. DOI: https://doi.org/10.1016/j.vetmic.2024.110002
16. Petrov A., Forth J. H., Zani L., Beer M., Blome S. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transboundary and Emerging Diseases. 2018;65(5):1318–1328. DOI: https://doi.org/10.1111/tbed.12881
17. Oļševskis E., Masiulis M., Seržants M., Lamberga K., Šteingolde Ž., Krivko L., et al. Do Seropositive Wild Boars Pose a Risk for the Spread of African Swine Fever? Analysis of Field Data from Latvia and Lithuania. Pathogens. 2023;12(5):723. DOI: https://doi.org/10.3390/pathogens12050723
18. Makarov V. V. African swine fever: one hundred years later. Veterinariya segodnya = Veterinary Science Today. 2022;11(2):99–103. (In Russ.). DOI: https://doi.org/10.29326/2304-196X-2022-11-2-99-103
19. EFSA (European Food Safety Authority), Ståhl K., Boklund A., Podgórski T., Vergne T., Abrahantes J. C., et al. Epidemiological analysis of African swine fever in the European Union during 2022. EFSA Journal 2023;21(5):e08016. DOI: https://doi.org/10.2903/j.efsa.2023.8016
20. Frant M. P., Gal-Cisoń A., Bocian Ł., Ziętek-Barszcz A., Niemczuk K., Szczotka-Bochniarz A. African Swine Fever (ASF) Trend Analysis in Wild Boar in Poland (2014-2020). Animals (Basel). 2022;12(9):1170. DOI: https://doi.org/10.3390/ani12091170
21. Le V. P., Nguyen V. T., Le T. B., Mai N. T. A., Nguyen V. D., Than T. T., et al. Detection of Recombinant African Swine Fever Virus Strains of p72 Genotypes I and II in Domestic Pigs, Vietnam, 2023. Emerging Infectious Diseases. 2024;30(5):991–994. DOI: https://doi.org/10.3201/eid3005.231775
22. EFSA (European Food Safety Authority), Ståhl K., Boklund A., Podgórski T., Vergne T., Abrahantes J. C., et al. Scientific report on epidemiological analysis of African swine fever in the European Union during 2023. EFSA Journal. 2024;16(5):e8809. DOI: https://doi.org/10.2903/j.efsa.2024.8809
23. Gervasi V., Guberti V. African swine fever endemic persistence in wild boar populations: Key mechanisms explored through modelling. Transboundary and Emerging Diseases. 2021;68:2812–2825. DOI: https://doi.org/10.1111/tbed.14194
24. Bespalova T.Yu., Glazunova A.A. Identification of seropositive wild boars in Eurasia as a sign of possible formation of African swine fever-endemic areas (review). Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-NorthEast. 2023;24(4):527–537. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2023.24.4.527-537
25. Eblé P. L., Hagenaars T. J., Weesendorp E., Quak S., Moonen-Leusen H. W., Loeffen W. L. A. Transmission of African Swine Fever Virus via carrier (survivor) pigs does occur. Veterinary Microbiology. 2019;237:108345. DOI: https://doi.org/10.1016/j.vetmic.2019.06.018
26. Schulz K., Schulz J., Staubach C., Blome S., Nurmoja I., Conraths F. J., Sauter-Louis C., Viltrop A. African Swine Fever Re-Emerging in Estonia: The Role of Seropositive Wild Boar from an Epidemiological Perspective. Viruses. 2021;13(11):2121. DOI: https://doi.org/10.3390/v13112121
27. Patrick B. N., Machuka E. M., Githae D., Banswe G., Amimo J. O., Ongus J. R., et al. Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo. Veterinary Microbiology. 2020;240:108521. DOI: https://doi.org/10.1016/j.vetmic.2019.108521
28. Gallardo C., Soler A., Nieto R., Sánchez M. A., Martins C., Pelayo V., et al. Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transboundary and Emerging Diseases. 2015;62(6):612–622. DOI: https://doi.org/10.1111/tbed.12431
29. Nurmoja I., Petrov A., Breidenstein C., Zani L., Forth J. H., Beer M., et al. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transboundary and Emerging Diseases. 2017;64(6):2034–2041. DOI: https://doi.org/10.1111/tbed.12614
30. Walczak M., Wasiak M., Dudek K., Kycko A., Szacawa E., Olech M., Woźniakowski G., Szczotka-Bochniarz A. Blood Counts, Biochemical Parameters, Inflammatory, and Immune Responses in Pigs Infected Experimentally with the African Swine Fever Virus Isolate Pol18_28298_O111. Viruses. 2021;13(3):521. DOI: https://doi.org/10.3390/v13030521
31. Lai D. C., Oh T., Nguyen H. T., Do D. T. The study of antigen carrying and lesions observed in pigs that survived post African swine fever virus infection. Tropical Animal Health and Production. 2022;54(5):264. DOI: https://doi.org/10.1007/s11250-022-03229-0
32. Sereda A. D., Kazakova A. S., Namsrayn S. G., Vlasov M. E., Kolbasov D. V. The attenuated ASFV strains MK200 and FK-32/135 as possible models for investigation of protective immunity by ASFV infection. PLoS ONE. 2022;17(7):e0270641. DOI: https://doi.org/10.1371/journal.pone.0270641
33. Pornthummawat A., Truong Q. L., Hoa N. T., Lan N. T., Izzati U. Z., Suwanruengsri M., et al. Pathological lesions and presence of viral antigens in four surviving pigs in African swine fever outbreak farms in Vietnam. Journal of Veterinary Medical Science. 2021;83(11):1653–1660. DOI: https://doi.org/10.1292/jvms.21-0409
34. Vlasov M., Sindryakova I., Kudryashov D., Morgunov S., Kolbasova O., Lyska V., et al. Administration Routes and Doses of the Attenuated African Swine Fever Virus Strain PSA-1NH Influence Cross-Protection of Pigs against Heterologous Challenge. Animals. 2024;14(9):1277. DOI: https://doi.org/10.3390/ani14091277
35. Shotin A. R., Mazloum A., Igolkin A. S., Shevchenko I. V., Elsukova A. A., Aronova E. V., Vlasova N. N. Alternative approaches to the diagnosis of African swine fever in the Russian Federation in 2017–2021. Voprosy Virusologii = Problems of Virology. 2022;67(4):290–303 (In Russ.). DOI: https://doi.org/10.36233/0507-4088-112
36. de Carvalho Ferreira H. C., Weesendorp E., Elbers A. R., Bouma A., Quak S., Stegeman J. A., Loeffen W. L. African swine fever virus excretion patterns in persistently infected animals: a quantitative approach. Veterinary Microbiology. 2012;160(3-4):327–340. DOI: https://doi.org/10.1016/j.vetmic.2012.06.025
37. Oh T., Nguyen T. M., Ngo T. T. N., Thinh D., Nguyen T. T. P., Do L. D., Do D. T. Long-term follow-up of convalescent pigs and their offspring after an outbreak of acute African swine fever in Vietnam. Transboundary and Emerging Diseases. 2021;68(6):3194–3199. DOI: https://doi.org/10.1111/tbed.14276
38. Pietschmann J., Guinat C., Beer M., Pronin V., Tauscher K., Petrov A., Keil G., Blome S. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology. 2015;160(7):1657–1667. DOI: https://doi.org/10.1007/s00705-015-2430-2
39. Pepin K. M., Borowik T., Frant M., Plis K., Podgorski T. Risk of African swine fever virus transmission among wild boar and domestic pigs in Poland. Frontiers in Veterinary Science. 2023;10:1295127. DOI: https://doi.org/10.3389/fvets.2023.1295127
40. Mur L., Igolkin A., Varentsova A., Pershin A., Remyga S., Shevchenko I., Zhukov I., Sánchez-Vizcaíno J. M. Detection of African Swine Fever Antibodies in Experimental and Field Samples from the Russian Federation: Implications for Control. Transboundary and Emerging Diseases. 2016;63(5):e436–e440. DOI: https://doi.org/10.1111/tbed.12304
41. Dixon L. K., Ståhl K., Jori F., Vial L., Pfeiffer D. U. African Swine Fever Epidemiology and Control. Annual Review of Animal Biosciences. 2020;8:221–246. DOI: https://doi.org/10.1146/annurev-animal-021419-083741
42. Guinat C., Reis A. L., Netherton C. L., Goatley L., Pfeiffer D. U., Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Veterinary Research. 2014;45(1):93. DOI: https://doi.org/10.1186/s13567-014-0093-8
43. Pikalo J., Zani L., Hühr J., Beer M., Blome S. Pathogenesis of African swine fever in domestic pigs and European wild boar - Lessons learned from recent animal trials. Virus Research. 2019;271:197614. DOI: https://doi.org/10.1016/j.virusres.2019.04.001
44. Krut'ko S. A., Namsrayn S. G., Sereda A. D. Immunobiological and molecular genetic properties of nonhemadsorbing african swine fever virus strains (review). Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2022;57(2):207–221. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2022.2.207rus
45. Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging microbes & infections. 2021;10(1):2183–2193. DOI: https://doi.org/10.1080/22221751.2021.1999779
46. Barasona J. A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J. M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Frontiers in Veterinary Science. 2019;6:137. DOI: https://doi.org/10.3389/fvets.2019.00137
47. Kosowska A., Cadenas-Fernández E., Barroso S., Sánchez-Vizcaíno J. M., Barasona J. A. Distinct African swine fever virus shedding in wild boar infected with virulent and attenuated isolates. Vaccines. 2020;8:767. DOI: https://doi.org/10.3390/vaccines8040767
48. Martínez Avilés M., Bosch J., Ivorra B., Ramos Á. M., Ito S., Barasona J. Á., Sánchez-Vizcaíno J. M. Epidemiological impacts of attenuated African swine fever virus circulating in wild boar populations. Research in Veterinary Science. 2023;162:104964. DOI: https://doi.org/10.1016/j.rvsc.2023.104964
49. Sehl-Ewert J., Deutschmann P., Breithaupt A., Blome S. Pathology of African Swine Fever in wild boar carcasses naturally infected with German virus variants. Pathogens. 2022;11(11):1386. DOI: https://doi.org/10.3390/pathogens11111386
50. Vlasov M. E., Kudryashov D. A., Sindryakova I. P., Sevskikh T. A., Pivova E. Yu., Lyska V. M., Sereda A. D., Balyshev L. M. Comparative assessment of the pathogenicity of the african swine fever virus circulating in the Russian Federation since 2007. Veterinariya = Veterinary. 2024;(4):28–35. (In Russ.). DOI: https://doi.org/10.30896/0042-4846.2024.27.4.28-35
Review
For citations:
Bespalova T.Yu., Glazunova A.A. African swine fever: virus carriage and the role of surviving wild boar in the persistence and spread of infection (review). Agricultural Science Euro-North-East. 2024;25(6):988-999. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.6.988-999