Biological features of various streptomyces strains as potential agents of phytopathogens biocontrol
https://doi.org/10.30766/2072-9081.2024.25.6.1038-1049
Abstract
The article presents the results of studying the biological characteristics (antagonistic and cellulase activity, antibiotic resistance, indolyl-3-acetic acid (IAC) production, the presence of polyketide synthase and cellulase genes) of 13 bacterial strains of the genus Streptomyces. The screening revealed a strain of Streptomyces sp. 2K10 with a high level of antifungal activity against the pathogen Fusarium petroliferatum; three strains (RPLN23, 1N8, 3N2) – antagonist of the causative agent of wheat septoria nodorum blotch (Parastagonospora nodorum). As a biocontrol agent of phytopathogens, the most promising strain among the studied streptomycetes is RPLN23, characterized by antifungal activity (diameter of inhibition zones 24–30 mm), the presence of PKS II genes (229 bp) and the ability to synthesize IAA. For biocontrol of bacterial and fungal pathogens, it is proposed to use the strain Streptomyces sp. 3N3. The work also revealed strains capable of effective destruction of carboxymethylcellulose (RPLN12, 2K9 and 3K9), and strains with genes encoding cellulases of the GH74 family (RSFN5, RPLN12, 3N2) in the genome. A number of streptomyces (RSFN5, RPLN5), which did not show antagonism to the studied cultures of fungi and bacteria, are at the same time interesting for the presence of the PKS II and GH74 genes. Most of the streptomyces studied in the work are sensitive to antibiotics of various groups: aminoglycosides, tetracycline, polypetides, chloramphenicols ansamycins and macrolides, but not β-lactams. The obtained data contribute to the disclosure of the potential of streptomyces for their practical use.
Keywords
About the Authors
A. V. BakulinaRussian Federation
Anna V. Bakulina, PhD in Biological science, senior researcher, Head of the Laboratory of Molecular Biology and Breeding
Lenin str., 166a, Kirov, 610007
E. V. Tovstik
Russian Federation
Еvgeniya V. Тоvstiк, PhD in Biological science, associate professor, researcher, the Laboratory of Biotechnological Methods of Agricultural Plant Breeding
Lenin str., 166a, Kirov, 610007
E. A. Bessolitsyna
Russian Federation
Ekaterina A. Bessolitsyna, PhD in Biological science, senior researcher, the Laboratory of Molecular Biology and Breeding
Lenin str., 166a, Kirov, 610007
N. V. Novoselova
Russian Federation
Nina V. Novoselova, junior researcher, the Laboratory of Molecular Biology and Breeding
Lenin str., 166a, Kirov, 610007
N. S. Zhemchuzhina
Russian Federation
Natalya S. Zhemchuzhina, PhD in Biological science, senior researcher, Deputy Head of the State Collection of Phytopathogenic Microorganisms and Plant Varieties-Identifiers of Pathogenic Microorganisms
Institut str., possession 5, Bolshye Vyazemy settlement, 143050
References
1. Maksimov I. V., Abizgil'dina R. R., Pusenkova L. I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Prikladnaya biokhimiya i mikrobiologiya. 2011;47(4):373–385. (In Russ.). URL: https://elibrary.ru/item.asp?id=16553165
2. Rey T., Dumas B. Plenty is no plague: Streptomyces symbiosis with crops. Trends in plant science. 2017;22(1):30–37. DOI: https://doi.org/10.1016/j.tplants.2016.10.008
3. Vurukonda S. S. K. P., Giovanardi D., Stefani E. Plant growth promoting and biocontrol activity of Streptomycesspp. as endophytes. International Journal of Molecular Sciences. 2018;19(4):952. DOI: https://doi.org/10.3390/ijms19040952
4. Moumbock A. F. А., Gao M., Qaseem A., Li J., Kirchner P. A., Ndingkokhar B., et al. StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic acids research. 2021;49(D1):D600–D604. DOI: https://doi.org/10.1093/nar/gkaa868
5. Gowdar S. B., Deepa H., Amaresh Y. S. A brief review on biocontrol potential and PGPR traits of Streptomyces sp. for the management of plant diseases. Journal of Pharmacognosy and Phytochemistry. 2018;7(5):03–07. URL: https://www.phytojournal.com/archives/2018/vol7issue5/PartA/7-3-57-816.pdf
6. Hwang K. S., Kim H. U., Charusanti P., Palsson B. Ø., Lee S. Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances. 2014;32(2):255–268. DOI: https://doi.org/10.1016/j.biotechadv.2013.10.008
7. Olanrewaju O. S., Babalola O. O. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology. 2019;103(3):1179–1188. DOI: https://doi.org/10.1007/s00253-018-09577-y
8. Sousa J. A. J., Olivares F. L. Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture. 2016;3:24. DOI: https://doi.org/10.1186/s40538-016-0073-5
9. Al-Quwaie D. A. The role of Streptomyces species in controlling plant diseases: a comprehensive review. Australasian Plant Pathology. 2024;53(1):1–14. DOI: https://doi.org/10.1007/s13313-023-00959-z
10. Vurukonda S. S. K. P., Giovanardi D., Stefani E. Growth promotion and biocontrol activity of endophytic Streptomyces spp. In: Giampietro L., (ed.) Prime archives in Molecular Sciences, 2nd edition. Hyderabad: Vide Leaf; 2021. 55 р. DOI: https://doi.org/10.37247/PAMOL2ED.2.2021.20
11. Gauze G. F., Preobrazhenskaya T. P., Sveshnikova M. A., Terekhova L. P., Maksimova T. S. Actinomycetes indicator: genii Streptomyces, Streptoverticillium, Chainia. Moscow: Nauka, 1983. 248 p.
12. Egorov N. S. Fundamentals of the doctrine of antibiotics. Moscow: Vysshaya shkola, 1979. 455 p.
13. Teather R. M., Wood P. J. Use of Сongo red-polysaccharide interaction in erumeration and characterization of cellulolytic bacteria the bovine rumen. Applied and Environmental Microbiology. 1982;43(4):777–780. DOI: https://doi.org/10.1128/aem.43.4.777-780.1982
14. Ariffin H., Abdullah N., Md Shah U. K., Shirai Y., Hassan M. A. Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology. 2006;3(1):47–53. URL: https://www.ijet.feiic.org/journals/J-2006-V1005.pdf
15. Meudt W. J., Gaines T. P. Studies on the oxidation of indole-3-acetic acid by peroxidase enzymes. Colorimetric determination of indole-3-acetic acid oxidation products. Plant Physiology. 1967;42(10):1395–1399. DOI: https://doi.org/10.1104/pp.42.10.1395
16. Sambrook J., Fritch T., Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1983. 545 p. URL: https://archive.org/details/molecularcloning0000samb/page/n3/mode/2up
17. Petukhov D. V., Tovstik E. V., Bakulina А.V., Sazanova M.L., Burkov A.A. Soil Streptomyces sp. strain 2K1: phylogenetic position, effect on Fusarium proliferatum growth. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2020;(2):111–116. (In Russ.). DOI: https://doi.org/10.25750/1995-4301-2020-2-111-116 EDN: KKGIRG
18. Lorenzi A. S., Bonatelli M. L., Chia M. A., Peressim L., Quecine M. C. Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms. 2022;10(10):2072. DOI: https://doi.org/10.3390/microorganisms10102072
19. D’Costa V. M., King C. E., Kalan L., Morar M., Sung W. W., Schwarz C., et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. DOI: https://doi.org/10.1038/nature10388
20. Cytryn E. The soil resistome: the anthropogenic, the native, and the unknown. Soil Biology and Biochemistry. 2013;63:18–23. DOI: https://doi.org/10.1016/j.soilbio.2013.03.017
21. Lee N., Hwang S., Kim J., Cho S., Palsson B., Cho B. K. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal. 2020;18:1548–1556. DOI: https://doi.org/10.1016/j.csbj.2020.06.024
22. Yuan M., Yu Y., Li H. R., Dong N., Zhang X. H. Phylogenetic diversity and biological activity of Actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean. Marine Drugs. 2014;12(3):1281–1297. DOI: https://doi.org/10.3390/md12031281
23. Duffy B., Schouten A., Raaijmakers J. M. Pathogen self-defense: mechanisms to counteract microbial antagonism. Annual Review of Phytopathology. 2003;41:501–538. DOI: https://doi.org/10.1146/annurev.phyto.41.052002.095606
24. Vinogradova K. A., Bulgakova V. G., Polin A. N., Kozhevin P. A. Microbial Antibiotic Resistance: Resistome, Its Volume, Diversity and Development. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2013;58(5-6):38–48. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=22477512
25. Pacios-Michelena S., Aguilar González C. N., Alvarez-Perez O. B., Rodriguez-Herrera R., Chávez-González M., Arredondo Valdés R., et al. Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Frontiers in Sustainable Food Systems. 2021;5:696518. DOI: https://doi.org/10.3389/fsufs.2021.696518
26. Bokov N. A., Abubakirova R. I., Shirokikh I. G. Study of agronomically valuable synergistic effects in binary cultures of soil streptomycetes. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2023;24(5):799-809. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2023.24.5.799-809
27. Lima L. H. C., De Marco J. L., Felix C. R. Enzimas hidrolíticas envolvidas no controle por micoparasitismo. In: Melo I.S., Azevedo J.L. (eds). Controle biológico. Jaguariúna: EMBRAPA-CNPMA, 1998. pp. 263–304.
28. Sakineh A., Sadeghi A., Safaie N. Biocontrol of cucumber damping-off by Streptomyces strains producing siderophore and cellulase under extreme condition. Journal of Microbial Biology. 2020;9(33):1–13. URL: https://bjm.ui.ac.ir/article_24672.html
29. Nikolaidis M., Hesketh A., Frangou N., Mossialos D., Van de Peer Y., Oliver S. G., Amoutzias G. D. A panoramic view of the genomic landscape of the genus Streptomyces. Microbial Genomics. 2023;9(6):001028. DOI: https://doi.org/10.1099/mgen.0.001028
30. Book A. J., Lewin G. R., McDonald B. R., Takasuka T. E., Wendt-Pienkowski E., Doering D. T., et al. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression. PLoS Biology. 2016;14(6):e1002475. DOI: https://doi.org/10.1371/journal.pbio.1002475
31. Naumov D. G. Hierarchical classification of glycoside hydrolases. Biokhimiya. 2011;76(6):764–781. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=16381097
32. Al-Tammar F. K., Khalifa A. Y. An update about plant growth promoting Streptomyces species. Journal of Applied Biology & Biotechnology. 2023;11(4):1–10. DOI: https://doi.org/10.7324/JABB.2023.130126
33. Shirokikh I. G., Shirokikh A. A. Antagonism and resistance to antibiotics of actinomycetes from soils of three specially protected natural territories. Pochvovedenie = Eurasian Soil Science. 2019;(10):1203–1210. (In Russ.). DOI: https://doi.org/10.1134/S0032180X19100137
34. Shirokikh I. G., Bakulina A. V., Nazarova Ya. I., Shirokikh A. A., Kozlova L. M. Effect of Streptomyces castelarensis A4 on the lesion by phytopathogenic micromycetes and the yield of grain crops of field rotation. Mikologiya i fitopatologiya = Mycology and Phytopathology. 2020;54(1):59–66. (In Russ.). DOI: https://doi.org/10.31857/S0026364820010080
Review
For citations:
Bakulina A.V., Tovstik E.V., Bessolitsyna E.A., Novoselova N.V., Zhemchuzhina N.S. Biological features of various streptomyces strains as potential agents of phytopathogens biocontrol. Agricultural Science Euro-North-East. 2024;25(6):1038-1049. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.6.1038-1049