The history of the formation of Siberian black-and-white Holstein cattle (review)
https://doi.org/10.30766/2072-9081.2025.26.3.499-518
Abstract
The development of Siberian black-and-white Holstein cattle has been studied. The subject of the study was the history of the origin and domestication of the ancestral forms of Siberian black-and-white Holstein cattle, namely the Holstein, Soviet black-and-white breeds, indigenous cattle of Siberia and the western regions of Russia. It has been shown that cattle in western Russia most likely originated from wild auroch (Bos primigenius) that lived in North Africa or the Middle East. However, some records indicate the introduction of genes from the wild wisent (Bison bonasus). The Holstein breed originated from the European wild aurochs (Bos primigenius), but evolved without the influx of genes from Russian cattle. In turn, since the 18th century, Russian cattle have been periodically improved by producers of Frisian, Dutch, and then Holstein breeds. The origin of indigenous Siberian cattle is still a matter of debate. According to one hypothesis, the indigenous Siberian cattle are descendants of the wild aurochs (Bos primigenius), which was domesticated in North Africa and entered Siberia along with the migration of human tribes. Another theory attributes the indigenous Siberian cattle to the so-called TuranoMongolian group, the origin of which also raises questions. In the genome of modern representatives of Turano-Mongolian cattle, haplotypes peculiar to wild aurochs (Bos primigenius), zebu (Bos indicus), as well as markers not peculiar to any of these species were found. This may indicate the origin of Turano-Mongolian cattle from a separate wild ancestor, as well as the introduction of yak (Bos mutus) or another type of bull. Thus, the gene pool of Siberian black-and-white cattle is a unique genetic reserve that combines the adaptive qualities of local cattle and the high potential of dairy productivity inherited from the Holstein breed.
About the Authors
K. S. ShatokhinRussian Federation
Kirill S. Shatokhin, PhD in Biological Science, associate professor, senior researcher, the Laboratory of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
K. N. Narozhnykh
Russian Federation
Kirill N. Narozhnykh, PhD in Biological Science, associate professor, Associate Professor at the Department of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
A. F. Petrov
Russian Federation
Alexey F. Petrov, Head of the Laboratory of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
M. A. Chechushkova
Russian Federation
Marina A. Chechushkova, PhD in Biological Science, associate professor, Associate Professor at the Department of the Laboratory of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
V. M. Norkinа
Russian Federation
Violetta M. Norkina, lecturer, the Department of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
O. V. Efremova
Russian Federation
Olga V. Efremova, chief zootechnician and breeder
Verkh-Irmen village, Ordynsk district, Novosibirsk region, 633272
E. V. Kamaldinov
Russian Federation
Evgueny V. Kamaldinov, DSc in Biological Science, associate professor, Head of the Department of Applied Bioinformatics
Dobrolyubov Street, 160, Novosibirsk, 630039
References
1. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V. et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2018;120(2):125–137. DOI: https://doi.org/10.1038/s41437-017-0024-3
2. Peñagaricano F. Chapter 6 – Genetics and genomics of dairy cattle. Animal Agriculture. 2020. pp. 101–119. DOI: https://doi.org/10.1016/B978-0-12-817052-6.00006-9
3. Petrov A. F., Bogdanova O. V., Narozhnykh K. N., Kamaldinov E. V., Shatokhin K. S., Gart V. V. et al. Clustering of countries based on dairy productivity characteristics of Holstein cattle for breeding material selection. Veterinary World. 2024;17(5):1108–1118. DOI: https://doi.org/10.14202/vetworld.2024.1108-1118
4. Gutiérrez-Reinoso M. A., Aponte P. M., García-Herreros M. A review of inbreeding depression in dairy cattle: current status, emerging control strategies, and future prospects. Journal of Dairy Research. 2022;89(1):3–12. DOI: https://doi.org/10.1017/S0022029922000188
5. Kochnev N., Goncharenko G., Mager S., Unzhakova A., Shatokhin K. Genotyping of selection-significant polymorphisms of cattle of the Western Siberia. E3S Web of Conferences. 2020;222:03019. DOI: https://doi.org/10.1051/e3sconf/202022203019
6. Bogdanova O. V., Kamaldinov E. V., Kulikova S. G., Garth V. V., Petrov A. F., Narozhnykh K. N., Zhigulin T. A. Scientific and theoretical substantiation of the system of improving selection and breeding work in dairy cattle breeding in the Novosibirsk region. Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet) = Bulletin of NSAU (Novosibirsk State Agrarian University). 2023;(2):149–155. (In Russ.). DOI: https://doi.org/10.31677/2072-6724-2023-67-2-149-155
7. Efremova O. V., Rogozin V. A., Shatokhin K. S., Kamaldinov E. V., Petrov A. F., Bogdanova O. V. Dairy productivity of Irmen cattle in a retrospective aspect. Actual problems of the agro-industrial complex: collection of scientific papers. Novosibirsk: Izdatel'skiy tsentr NGAU «Zolotoy kolos», 2021. pp. 362–365. URL: https://elibrary.ru/item.asp?id=47134704
8. Liskun E. F. Domestic cattle breeds. Moscow: Gosudarstvennoe izdatel'stvo sel'skokhozyaystvennoy literatury, 1949. 184 p. URL: http://elib.cnshb.ru/books/free/0411/411371/54/
9. Yudin N. S., Yurchenko A. A., Larkin D. M. Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(2):190–201. (In Russ.). DOI: https://doi.org/10.18699/VJ21.023
10. Bugakov Yu. F., Labuzova I. M., Shefer N. A. Irmen type of black-and-white cattle: components of success. Novosibirsk: Irmen', 2007. 296 p.
11. Gerasimchuk L. D., Yarantseva S. B. Creation and improvement of black-and-white Siberian cattle. The state and problems of agricultural science in Altai: collection of scientific articles. Barnaul: FGBNU Altayskiy nauchno-issledovatel'skiy institut sel'skogo khozyaystva, 2010. pp. 264–267. URL: https://elibrary.ru/item.asp?id=32857404
12. Black-and-white cattle of Siberia. Pod red. A. I. Zheltikova. Novosibirsk: Novosibirskiy GAU, 2010. 500 p.
13. Lenstra J. A., Felius M., Theunissen B. Domestic cattle and buffaloes. Ecology, Evolution and Behaviour of Wild Cattle. Melletti M, Burton J, ed. Cambridge University Press, 2014. pp. 30–38. URL: https://www.cambridge.org/core/product/identifier/9781139568098%23c3/type/book_part
14. Russel N., Martin L., Buitenhuis H. Cattle Domestication at Çatalhöyük Revisited. Current Anthropology. 2005;46(S5):101–108. URL: https://www.journals.uchicago.edu/doi/full/10.1086/497664
15. McTavish E. J., Decker J. E., Schnabel R. D., Taylor J. F., Hillis D. M. New World cattle show ancestry from multiple independent domestication events. Proceedings of the National Academy of Sciences. 2013;110(15):E1398–E1406. DOI: https://doi.org/10.1073/pnas.1303367110
16. Felius M., Beerling M. L., Buchanan D., Theunissen B., Koolmees P., Lenstra J. On the History of Cattle Genetic Resources. Diversity. 2014;6(4):705–750. DOI: https://doi.org/10.3390/d6040705
17. Scheu A., Powell A., Bollongino R., Vigne J. D., Tresset A., Çakırlar C. et al. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genetics. 2015;16:54. DOI: https://doi.org/10.1186/s12863-015-0203-2
18. Upadhyay M. R., Chen W., Lenstra J. A., Goderie C. R. J., MacHugh D. E., Park S. D. E. et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity. 2017;118(2):169–176. DOI: https://doi.org/10.1038/hdy.2016.79
19. Pitt D., Sevane N., Nicolazzi E. L., MacHugh D. E., Park S. D. E., Colli L. et al. Domestication of cattle: Two or three events? Evolutionary Applications. 2019;12(1):123–136. DOI: https://doi.org/10.1111/eva.12674
20. Felius M. Cattle breeds of the World. BRILL, 2024. 992 p. URL: https://brill.com/display/title/59475
21. Xia X., Qu K., Wang Y., Sinding M. H. S., Wang F., Hanif Q. et al. Global dispersal and adaptive evolution of domestic cattle: a genomic perspective. Stress Biology. 2023;3(1):8. DOI: https://doi.org/10.1007/s44154-023-00085-2
22. Senczuk G., Mastrangelo S., Ajmone-Marsan P., Becskei Z., Colangelo P., Colli L. et al. On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data. Genetics Selection Evolution. 2021;53(1):48. DOI: https://doi.org/10.1186/s12711-021-00639-w
23. Ajmone‐Marsan P., Garcia J. F., Lenstra J. A. On the origin of cattle: How aurochs became cattle and colonized the world. Evolutionary Anthropology. 2010;19(4):148–157. DOI: https://doi.org/10.1002/evan.20267
24. Bogdanov E. A. Origin of pets. 2-e izd. Moscow: Sel'khozgiz, 1937. 334 p. URL: https://rusneb.ru/catalog/000199_000009_005159871/
25. Tapio I., Tapio M., Li M. H., Popov R., Ivanova Z., Kantanen J. Estimation of relatedness among nonpedigreed Yakutian cryo-bank bulls using molecular data: implications for conservation and breed management. Genetics Selection Evolution. 2010;42(1):28. DOI: https://doi.org/10.1186/1297-9686-42-28
26. Gladyr' E. A., Shadrina Ya. L., Gorelov P. V., Davaakhuu L., Popov R. G., Matyukov V. S., et al. Yhe characteristics of allele pool of yakut cattle using microsatellites. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2011;46(6):65–69. (In Russ.). URL: https://cyberleninka.ru/article/n/harakteristika-allelofonda-yakutskogo-skota-po-mikrosatellitam
27. Kolesnik N. N. The evolution of cattle. Stalinabad, 1949. 330 p.
28. Iso‐Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z. et al. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Animal Genetics. 2016;47(6):647–657. DOI: https://doi.org/10.1111/age.12473
29. Xia X. T., Achilli A., Lenstra J. A., Tong B., Ma Y., Huang Y. Z. et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia. Heredity. 2021;126(6):1000–1008. DOI: https://doi.org/10.1038/s41437-021-00428-7
30. Gao Y., Gautier M., Ding X., Zhang H., Wang Y., Wang X. et al. Species composition and environmental adaptation of indigenous Chinese cattle. Scientific Reports. 2017;7(1):16196. DOI: https://doi.org/10.1038/s41598-017-16438-7
31. Cai Y., Jiao T., Lei Z., Liu L., Zhao S. Maternal genetic and phylogenetic characteristics of domesticated cattle in northwestern China. PLoS One. 2018; 13(12): e0209645. DOI: https://doi.org/10.1371/journal.pone.0209645
32. Gendzhieva O. B., Sulimova G. E. The analysis of mutual relations between breeds of horned cattle of the turano-mongolian group on the basis of DNA polymorphism. Aktual'nye voprosy veterinarnoy biologii = Actual questions of veterinary biology. 2012;14(2):14–16. (In Russ.). URL: https://elibrary.ru/item.asp?id=17732938
33. Chen N., Huang J., Zulfiqar A., Li R., Xi Y., Zhang M. et al. Population structure and ancestry of Qinchuan cattle. Animal Genetics. 2018;49(3):246–248. DOI: https://doi.org/10.1111/age.12658
34. Mannen H., Kohno M., Nagata Y., Tsuji S., Bradley D. G., Yeo J. S. et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Molecular Phylogenetics and Evolution. 2004;32(2):539–544. DOI: https://doi.org/10.1016/j.ympev.2004.01.010
35. Zhang H., Paijmans J. L. A., Chang F., Wu X., Chen G., Lei C. et al. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nature Communications. 2013;4(1):2755. DOI: https://doi.org/10.1038/ncomms3755
36. Lu P., Brunson K., Yuan J., Li Z. Zooarchaeological and Genetic Evidence for the Origins of Domestic Cattle in Ancient China. Asian Perspectives. 2017;56(1):92–120. DOI: DOI: https://doi.org/10.1353/asi.2017.0003
37. Noda A., Yonesaka R., Sasazaki S., Mannen H. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs? PLoS One. 2018;13(1):e0190937. DOI: https://doi.org/10.1371/journal.pone.0190937
38. Buggiotti L., Yurchenko A. A., Yudin N. S., Vander Jagt C. J., Vorobieva N. V., Kusliy M. A. et al. Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Molecular Biology and Evolution. 2021;38(8):3093–3110. DOI: https://doi.org/10.1093/molbev/msab078
39. Keller" K. Origin of pets. Saint-Petersburg: Izdanie P. P. Soykina, 1913. 127 p. URL: https://rusneb.ru/catalog/000199_000009_003804321/?ysclid=manhopihts690168603
40. Kantanen J., Edwards C. J., Bradley D. G., Viinalass H., Thessler S., Ivanova Z. et al. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity. 2009;103(5):404–415. DOI: https://doi.org/10.1038/hdy.2009.68
41. Xia X., Qu K., Zhang G., Jia Y., Ma Z., Zhao X. et al. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle. Animal Genetics. 2019;50(1):70–73. DOI: https://doi.org/10.1111/age.12749
42. Livanov M. A guide to breeding and recuperating livestock. Saint-Petersburg, 1794. 80 p. URL: https://kp.rusneb.ru/item/reader/rukovodstvo-k-razvedeniyu-i-popravleniyu-domashnyago-skota
43. Rokosz M. History of the aurochs (Bos Taurus Primigenius) In Poland. Animal Genetic Resources. 1995;16:5–12. DOI: https://doi.org/10.1017/S1014233900004582
44. Douglas K. C., Halbert N. D., Kolenda C., Childers C., Hunter D. L., Derr J. N. Complete mitochondrial DNA sequence analysis of Bison bison and bison–cattle hybrids: Function and phylogeny. Mitochondrion. 2011;11(1):166–175. DOI: https://doi.org/10.1016/j.mito.2010.09.005
45. Yudin N. S., Kulikov I. V., Gunbin K. V., Aitnazarov R. B., Kushnir A. V., Sipko T. P. et al. Detection of mitochondrial DNA from domestic cattle in European bison (Bison bonasus) from the Altai Republic in Russia. Animal Genetics. 2012;43(3):362. DOI: https://doi.org/10.1111/j.1365-2052.2011.02261.x
46. Shapiro B., Oppenheimer J., Heaton M. P., Kuhn K. L., Green R. E., Blackburn H. D., Smith T. P. L. Most Beefalo cattle have no detectable bison genetic ancestry. ELife. 2024;13:RP102750. DOI: https://doi.org/10.7554/eLife.102750.1
47. Kostyunina O., Mikhailova M., Dotsev V., Zemlyanko I., Volkova V. V., Fornara M. S. et al. Comparative Genetic Characteristics of the Russian and Belarusian Populations of Wisent (Bison bonasus), North American Bison (Bison bison) and Cattle (Bos taurus). Cytology and genetics. 2020;54(2):116–123. DOI: https://doi.org/10.3103/S0095452720020085
48. Lush J. L., Holbert J. C., Willham O. S. Genetic history of the holstein-friesian cattle in the United States. Journal of Heredity. 1936;27(2):61–72. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a104174
49. Brade W., Brade E. Zuchtgeschichte der Deutschen Holsteinrinder. Berichte über Landwirtschaft. 2013;91(2):61. DOI: https://doi.org/10.12767/buel.v91i2.25
50. Houghton F. L. Holstein-Friesian cattle. A history of the breed and its development in America. Brattleboro, Vt, Press of the Holstein-Friesian Register, 1897. 380 p. URL: https://www.biodiversitylibrary.org/item/77956
51. Mansfield R. H. Progress of the breed. The history of U.S. Holsteins. Holstein-Friesian World, Inc. Sandy Creek, New York, USA, 1985. 362 p. URL: https://www.abebooks.co.uk/9780961471101/Progress-Breed-History-Holsteins-Richard-0961471107/plp
52. Xavier C., Cozler Y. L., Depuille L., Caillot A., Lebreton A., Allain C. et al. The use of 3-dimensional imaging of Holstein cows to estimate body weight and monitor the composition of body weight change throughout lactation. Journal of Dairy Science. 2022;105(5):4508–4519. DOI: https://doi.org/10.3168/jds.2021-21337
53. Turini L., Conte G., Bonelli F., Madrigali A., Marani B., Sgorbini M. et al. Designing statistical models for holstein rearing heifers’ weight estimation from birth to 15 months old using body measurements. Animals. 2021;11(7):1846. DOI: https://doi.org/10.3390/ani11071846
54. Kerslake J. I., Amer P. R., O’Neill P. L., Wong S. L., Roche J. R., Phyn C. V. C. Economic costs of recorded reasons for cow mortality and culling in a pasture-based dairy industry. Journal of Dairy Science. 2018;101(2):1795–1803. DOI: https://doi.org/10.3168/jds.2017-13124
55. Hu H., Mu T., Ma Y., Wang X., Ma Y. Analysis of longevity traits in Holstein cattle: A Review. Frontiers in Genetics. 2021;12:695543. DOI: https://doi.org/10.3389/fgene.2021.695543
56. Najafabadi H. A., Mahyari S. A., Edriss M. A., Strapakova E. Genetic analysis of productive life length in Holstein dairy cows using Weibull proportional risk model. Archives Animal Breeding. 2016;59(3):387–393. DOI: https://doi.org/10.5194/aab-59-387-2016
57. Chen S. Y., Boerman J. P., Gloria L. S., Pedrosa V. B., Doucette J., Brito L. F. Genomic-based genetic parameters for resilience across lactations in North American Holstein cattle based on variability in daily milk yield records. Journal of Dairy Science. 2023;106(6):4133–4146. DOI: https://doi.org/10.3168/jds.2022-22754
58. Ventura R. V., Fonseca E., Silva F., Yáñez J. M., Brito L. F. Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Animal Frontiers. 2020;10(2):45–52. DOI: https://doi.org/10.1093/af/vfaa008
59. Clark D. A., Caradus J. R., Monaghan R. M., Sharp P., Thorrold B. S. Issues and options for future dairy farming in New Zealand. New Zealand Journal of Agricultural Research. 2007;50(2):203–221. DOI: https://doi.org/10.1080/00288230709510291
60. Rowarth J. S. Dairy cows — economic production and environmental protection. In: Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand: Dymond J. R., 2013. pp. 85–93. URL: https://www.landcareresearch.co.nz/assets/Publications/Ecosystem-services-in-New-Zealand/1_6_Rowarth.pdf
61. Axford M., Santos B., Stachowicz K., Quinton C., Pryce J. E., Amer P. Impact of a multiple-test strategy on breeding index development for the Australian dairy industry. Animal Production Science. 2021;61(18):1940. DOI: https://doi.org/10.1071/AN21058
62. Ostrovskiy A. V. Animal husbandry in European Russia in the late 19th – early 20th century. SaintPetersburg, 2014. 442 p. URL: https://library6.com/3596/item/530861
63. Stepanovskiy I. K. Buttermaking is the wealth of the North. Vologda: tip. t-va «Znamenskiy i Tsvetov», 1912. 298 p. URL: https://rusneb.ru/catalog/000199_000009_003797337/?ysclid=manp2378of647723564
64. Khodetskiy S. M. Rukovodstvo k ukhodu za krupnym rogatym skotom. Saint-Petersburg: Tip. Ministerstva gosudarstvennykh imushchestv, 1851. 218 p. URL: https://rusneb.ru/catalog/000199_000009_02000031961/?ysclid=m78yhx16ca285423556
65. Middendorf A. F. About ways to improve our cattle breeding. Saint-Petersburg, 1872. 67 p.
66. Fridolin S. P., Yurmaliat A. P. Dairy cattle and dairy farming: Manual for small hosts, comp. according to lectures and talks, read by the authors of short-term courses on cattle breeding and dairy farming in villages. Vol. 1–2. Saint-Petersburg: Izdanie A. F. Devriena, 1913. 254 p. URL: https://rusneb.ru/catalog/000199_000009_004017395/
67. Zinovieva N. A., Dotsev A. V., Sermyagin A. A., Vimmers K., Reyer Kh., Solkner Y. et al. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2016;51(6):788–800. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2016.6.788rus
68. Kuleshov P. N. Cattle. 6-e izd. Moscow: Novaya derevnya, 1926. 259 p. URL: https://rusneb.ru/catalog/000199_000009_009107189/
69. Abdelmanova A. S., Kharzinova V. R., Volkova V. V., Mishina A. I., Dotsev A. V., Sermyagin A. A. et al. Genetic diversity of historical and modern populations of Russian. Genes (Basel). 2020;11(8):940. DOI: https://doi.org/10.3390/genes11080940
70. Kosyachenko N. M., Abramova M. V., Ilina A. V., Zyryanova S. V., Konovalov A. V., Kosourova T. N. The Holstein breed in the creation of improved genotypes and inbreed types of cattle: monograph. Yaroslavl': Kantsler, 2020. 157 p. URL: http://yaniizhk.ru/wp-content/uploads/2021/02//Голштинская-порода-в-созданииулучшенных-генотипов-и-внутрипородных-типов-крупного-рогатого-скота.pdf
71. Smaragdov M. G., Kudinov A. A. Full genome inbreeding assessment of dairy cattle. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2019;33(6):51–53. (In Russ.). DOI: https://doi.org/10.24411/0235-2451-2019-10612
72. Kassal B. Yu. Cattle breeding in the Omsk region. Natsional'nye prioritety Rossii. 2019;(3):66–74. (In Russ.). URL: https://elibrary.ru/item.asp?id=41847112
73. Krott I. I. Improvement of the breed of local cattle in business enterprises of Western Siberia in the late 19th and early 20th centuries. History and local history of Western Siberia: problems and prospects of study: Proceedings of the V Regional scientific-practical conference with international participation. Ishim: filial FGBOU VPO «Tyumenskiy gosudarstvennyy universitet» v g. Ishime, 2014. pp. 43–50. URL: https://elibrary.ru/item.asp?id=22520322
74. Kuznetsov D. V. Organization of the first exhibition of livestock in Western Siberia in the early XX century. Vestnik Omskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Omsk SAU. 2016;(2):254–260. (In Russ.). URL: https://elibrary.ru/item.asp?id=26584041
75. Ivanenko V. E. Livestock breeding of the Transurals region in the years of the civil war and the new economic policy (1919-1928). Sovremennye issledovaniya sotsial'nykh problem = Modern Studies of Social Issues. 2017;9(4–1):65–77. (In Russ.). DOI: https://doi.org/10.12731/2077-1770-2017-4-65-77
76. Sokolov A. P. Red German cattle in Omsk province. Omsk: Omskoe otd-nie Vserossiyskogo Mennonitskogo sel'skokhozyaystvennogo obshchva, 1926. 88 p. URL: https://media.chortitza.org/pdf/pdf/0v925.pdf
77. Nikolaev A. A. As Siberia in the early twentieth century became the center of world butter trade. EKO. 2016;(6):36–49. (In Russ.). URL: https://elibrary.ru/item.asp?id=26096642
78. Korosteleva N. I., Rudishina N. I. Histoy of breeding and modern condition of the altai population of the dairy cow of black-and-white breeed in the ob area. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta = Bulletin of Altai State Agricultural University. 2007;(3):30–38. (In Russ.). URL: https://elibrary.ru/item.asp?id=10411881
79. Klimenok I. I., Yarantseva S. B., Shishkina M. A. Productive and breeding qualities of black and motley cattle Siberian region. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2014;(2):30–33. (In Russ.). URL: https://elibrary.ru/item.asp?id=24353813
80. Golubkov A. I., Lushchenko A. E. Interbreed typekrasnoyarsk black-motley breed. Vestnik KrasGAU = The Bulletin of KrasGAU. 2016;(1):137–140. (In Russ.). URL: https://elibrary.ru/item.asp?id=25658338
81. Perminova O. V. Genealogical structure of the breeding stock of dairy cattle farms of the Omsk region. Actual problems of modern science: collection of articles of II International scientific-practical conference. Penza: MTsNS «Nauka i Prosveshchenie», 2022. pp. 21–25. URL: https://www.elibrary.ru/item.asp?id=49305558
82. Aitnazarov R. B., Mishakova T. M., Yudin N. S. Assessment of genetic diversity and phylogenetic relationships in Black Pied cattle in the Novosibirsk Region using microsatellite markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;25(8):831–838. (In Russ.). DOI: https://doi.org/10.18699/VJ21.096
83. Petrov A. F., Kamaldinov E. V. Genetic structure of cattle of the siberian branch by microsatellite loci. Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet) = Bulletin of NSAU (Novosibirsk State Agrarian University). 2024;(3):230–239. (In Russ.). DOI: https://doi.org/10.31677/2072-6724-2024-72-3-230-239
84. Petrov A. F., Kamaldinov E. V., Bogdanova O. V., Shatokhin K. S., Efremova O. F., Rogozin V. A. The role of fixed factors in the variability of milk yield in Irmeni cattle under industrial complex conditions. Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet) = Bulletin of NSAU (Novosibirsk State Agrarian University). 2021;(4):137–149. (In Russ.). DOI: https://doi.org/10.31677/2072-6724-2021-61-4-137-149
85. Gart V. V., Kulikova S. G., Narozhnykh K. N., Kamaldinov E. V. Early prediction of milk fat content in holstein cattle based on correlated variability with linear traits. Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet) = Bulletin of NSAU (Novosibirsk State Agrarian University). 2024;(4):168–176. (In Russ.). DOI: https://doi.org/10.31677/2072-6724-2024-73-4-168-176
86. Gart V. V., Kulikova S. G., Bogdanova O. V., Norkina V. M., Kamaldinov E. V., Petrov A. F. Polynomial conjugate variability of traits of linear assessment of the exterior and milk yield of highly productive Holstein cattle. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2024;(5):86–100. (In Russ.). DOI: https://doi.org/10.26897/0021-342X-2024-5-86-100
87. Kamaldinov E. V., Panferova O. D., Efremova O. V., Marenkov V. G., Petrov A. F., Ryumkina I. N. Assessment of the variability of reproductive abilities of a black and white cattle using genealogical data and paratypical factors. Data in Brief. 2021;35:106842. DOI: https://doi.org/10.1016/j.dib.2021.106842
Review
For citations:
Shatokhin K.S., Narozhnykh K.N., Petrov A.F., Chechushkova M.A., Norkinа V.M., Efremova O.V., Kamaldinov E.V. The history of the formation of Siberian black-and-white Holstein cattle (review). Agricultural Science Euro-North-East. 2025;26(3):499-518. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.3.499-518