The role of the cytochrome system in the biotransformation of xenobiotics and pharmacaueticals (review)
https://doi.org/10.30766/2072-9081.2025.26.1.21-39
Abstract
Modern science refers to substances that are potentially toxic and not natural metabolites for the mammalian organism as xenobiotics. Due to the intensification of the chemical and pharmaceutical industries, the concentration of such compounds in the air, water, soil, and animal feed increases proportionally to the increase in production turnover of specialized enterprises. The biotransformation of xenobiotics and medicines, or the detoxification process, is a natural and most effective way to remove foreign metabolites from a living organism. Special enzyme systems take an active part in this process, including the cytochrome system. The functions and role of individual types of P450 cytochromes in the process of xenobiotic biotransformation in animals and humans have been partially studied, but a significant number of enzymes are at the research stage. The review provides the analysis of the results of 60 scientific articles on the problem of biotransformation of xenobiotics by the cytochrome systems, the basic features of this process are revealed and the estimates of its application for the diagnostics of different pathologies is given.
Keywords
About the Authors
Vladimir S. PonamarevRussian Federation
Vladimir S. Ponamarev, PhD in Veterinary Science, associate professor at the Department of Pharmacology and Toxicology
Chernigovskaya St., 5, Saint Petersburg, 196084
Olga S. Popova
Russian Federation
Olga S. Popova, PhD in Veterinary Science, associate professor, associate professor at the Department of Pharmacology and Toxicology
Chernigovskaya St., 5, Saint Petersburg, 196084
Olga A. Ukrainskaya
Russian Federation
Olga A. Ukrainskaya, 5th-year student
Chernigovskaya St., 5, Saint Petersburg, 196084
References
1. Abramyan A. S., Makarova L. M., Pogorelyy V. E. On the issue of interspecific differences in the cytochrome P450 system during preclinical drug trials. Current problems of natural sciences and pharmacy: collection of articles of the All-Russian Scientific Conference. Yoshkar-Ola: Mariyskiy GU, 2023. pp. 311–314. URL: https://elibrary.ru/item.asp?id=54627907&pff=1
2. Gorina S. S., Toporkova Ya. Yu. Comparative analysis of hemoproteins (cytochrome P450 and catalase) participating in the biosynthesis of oxylipins in plants and animals. New technologies in medicine, biology, pharmacology and ecology: International research. Conference NT + M&Ec`2020. Spring session. Moscow, 2021. Moscow: Institut novykh informatsionnykh tekhnologiy, 2021. pp. 274–279. DOI: https://doi.org/10.47501/978-5-6044060-1-4.48
3. Koroleva E. S., Ponamarev V. S. Effect of the drug "Hepaton" on the cytochrome P450 index. Ecology and nature management: Proceedings of International scientific and practical conference. Nazran' – Kantyshevo: OOO «KEP», 2020. pp. 131–133.
4. Latypova E. A., Shishkina T. V., Kamburova V. S. Analysis of the impact of environmental ecotoxicants on enzymes and genes of the mammalian xenobiotic metabolism system. Natsional'noe zdorov'e = National Health. 2021;(2):52–55. (In Russ.).
5. Mandzhieva A. A., Lukina P. A., Vechkitov R. S., Avetisova I. V. Methods for studying the mechanisms of biotransformation of xenobiotics in vitro. Student Scientific Forum: Proceedings of the International student scientific conference. Saratov: OOO «Evroaziatskaya nauchno-promyshlennaya palata», 2021. Vol. VIII. pp. 22–23. URL: https://elibrary.ru/item.asp?id=45678037
6. Miroshnikov M. V., Sultanova K. T., Makarova M. N., Makarov V. G. A comparative review of the activity of enzymes of the cytochrome P450 system in humans and laboratory animals. Prognostic value of preclinical models in vivo. Translyatsionnaya meditsina = Translational Medicine. 2022;9(5):44-77. (In Russ.). DOI: https://doi.org/10.18705/2311-4495-2022-9-5-44-77
7. Popova O. S., Ponamarev V. S., Kostrova A. V., Agafonova L. A. Pharmacokinetic parameters of caffeine in laboratory animals in the context of assessing the functional state of the liver. Mezhdunarodnyy vestnik veterinarii = International Journal of Veterinary Medicine. 2023;(2):142–149. (In Russ.). DOI: https://doi.org/10.52419/issn2072-2419.2023.2.142
8. Rembovskiy V. R., Mogilenkova L. A. Detoxification processes when chemicals affect the body. SaintPetersburg: izd-vo Politekhnicheskogo u-ta, 2017. 384 p. URL: https://elibrary.ru/item.asp?id=38561435
9. Smirnov L. P., Sukhovskaya I. V., Borvinskaya E. V. Ethoxyresorufin o-deethylase -systematic accessory and its functional features of phase I enzyme of xenobiotics biotransformation (review). Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta = Proceedings of Petrozavodsk State University. 2015;(4):18–21. (In Russ.). URL: https://elibrary.ru/item.asp?id=25069573
10. Zemanova N., Anzenbacher P., Anzenbacherova E. The role of cytochromes P450 in the metabolism of selected antidepressants and anxiolytics under psychological stress. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic. 2022;166(2):140–149. DOI: https://doi.org/10.5507/bp.2022.019
11. Dekant W. The role of biotransformation and bioactivation in toxicity. Molecular, Clinical and Environmental Toxicology. 2009;99:57–86. DOI: https://doi.org/10.1007/978-3-7643-8336-7_3
12. Jackson K. D., Durandis R., Vergne M. J. Role of Cytochrome P450 Enzymes in the Metabolic Activation of Tyrosine Kinase Inhibitors. International journal of molecular sciences. 2018;19(8):2367. DOI: https://doi.org/10.3390/ijms19082367
13. Fayngor A. I., Sinitsyna N. I., Vorob'ev A. N., Abramovich R. A., Potanina O. G. Introduction of a dye in the development of a test system for phenotyping cytochrome P450 isoenzymes. Harmonization of approaches to pharmaceutical development: collection of theses of the III International scientific and practical conference. Moscow: Rossiyskiy u-t druzhby narodov (RUDN), 2020. pp. 4–6. URL: https://elibrary.ru/item.asp?id=44818800
14. Polyakova I. S., Churnosov M. I., Pakhomov S. P., Orlova V. S. Molecular and genetic mechanisms of xenobiotic biotransformation. Aktual'nye problemy meditsiny = Challenges in modern medicine. 2011;(16(111)):223–228. (In Russ.). URL: https://elibrary.ru/item.asp?id=19403719
15. Manikandan P., Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Current Drug Targets. 2018;19(1):38–54. DOI: https://doi.org/10.2174/1389450118666170125144557
16. Shchelkanov E. M., Tishina E. A., Manukov Yu. I., Saprykin V. P. Biotransformation of xenobiotics by molluscs (Mollusca L., 1758) – indicators of aquatic ecosystem pollution. Geograficheskaya sreda i zhivye sistemy = Geographical Environment and Living Systems. 2024;(1):154–173. (In Russ.). DOI: https://doi.org/10.18384/2712-7621-2024-1-154-181
17. Bogaards J. J., Bertrand M., Jackson P., Oudshoorn M. J., Weaver R. J., van Bladeren P. J., Walther B. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica. 2000;30(12):1131–1152. DOI: https://doi.org/10.1080/00498250010021684
18. Esteves F., Rueff J., Kranendonk М. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. Journal of Xenobiotics. 2021;11(3):94–114. DOI: https://doi.org/10.3390/jox11030007
19. Finnigan J. D., Young C., Cook D. J., Charnock S. J., Black G. W. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. Advances in Protein Chemistry and Structural Biology. 2020;122:289–320. DOI: https://doi.org/10.1016/bs.apcsb.2020.06.005
20. Reed L., Arlt V. M., Phillips D. H. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: an in vivo-in vitro paradox. Carcinogenesis. 2018;39(7);851–859. DOI: https://doi.org/10.1093/carcin/bgy058
21. Oesch F., Fabian E., Guth K., Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Archives of Toxicology. 2014;88(12):2135–2190. DOI: https://doi.org/10.1007/s00204-014-1382-8
22. Tuychieva D., Alimova R., Mirkhamidova P. Content of cytochrome P-450 in microsomal fractions of the liver of pregnant rats and their embryos. E3S Web of Conferences. 2023;421:04009. DOI: https://doi.org/10.1051/e3sconf/202342104009
23. Vukomanovic D., Jia Z., Nakatsu K., Smith G. N., Ozolinš T. R. S. Riboflavin and pyrroloquinoline quinone generate carbon monoxide in the presence of tissue microsomes or recombinant human cytochrome P-450 oxidoreductase: implications for possible roles in gasotransmission. Canadian Journal of Physiology and Pharmacology. 2020;98(5):336–342. DOI: https://doi.org/10.1139/cjpp-2019-0376
24. Dilfuza T., Mashhura P., Parida M., Babakhanova D., Alimova R. Effect of pesticides on the content of cytochrome P-450 of the monooxygenase system and on the ultrastructure of hepatocytes in rat embryos. European Journal of Molecular and Clinical Medicine. 2020;7(3):2473–2483.
25. Gaisina A. A., Mekhtiev A. A., Nurullayeva A. N., Palatnikov G. M., Shamilov E. N. The impact of background γ-radiation on erythrocyte nuclear pathology, the serotonergic system, and cytochrome P-450 in hens (GALLUS GALLUS DOMESTICUS) from Azerbaijan. Ecotoxicology. 2022;31(5):846–851. DOI: https://doi.org/10.1007/s10646-022-02540-8
26. Takiyama M., Matsumoto T., Kaifuchi N., Mizuhara Y., Warabi E., Ohbuchi K., Mizoguchi K. In vitro assessment of the inhibitory effect of goreisan extract and its ingredients on the P-glycoprotein drug transporter and cytochrome P-450 metabolic enzymes. Xenobiotica. 2022;52(5):511–519. DOI: https://doi.org/10.1080/00498254.2022.2078750
27. Baameur L., Aggoun D., Messasma Z., Bouet G., Le Guillanton G., Daran J. C., Ourari A. Synthesis, crystal structure, quantum chemical calculations, electrochemistry and electro-catalytical properties as cytochrome P-450 model of tetradentate Mn(III)-Schiff base complex. Indian Journal of Chemical Technology. 2022;29(4):339–353. DOI: https://doi.org/10.56042/ijct.v29i4.56950
28. Makhmudova G. A. Effect of the cytochrome P-450 CYP2D6 enzyme on tamoxifen metabolism with potential co-administration with selective serotonin reuptake inhibitors. Genetics in the system of medical sciences: Proceedings of the Jubilee V Inter-University. ((I All-Russian) interdisciplinary student scientific and practical conference with international participation. Moscow: FGAOU VO Pervyy MGMU im. I. M. Sechenova Minzdrava Rossii (Sechenovskiy Universitet), 2023. pp. 110–112.
29. El-Ghiaty M. A., El-Mahrouk S. R., Alqahtani M. A., El-Kadi A. O. S. Differential modulation of cytochrome P450 enzymes by arsenicals in non-human experimental models. Drug metabolism reviews. 2023;55(4):405–427. DOI: https://doi.org/10.1080/03602532.2023.2254525
30. Solanki M., Pointon A., Jones B., Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug metabolism and disposition. 2018;46(8):1053–1065. DOI: https://doi.org/10.1124/dmd.117.078964
31. Mohammed B., Dizaye K., Amin B. Drug metabolism and cytochrome P-450 (CYPs). Zanco Journal of Medical Sciences. 2024;28(1):119–128. DOI: https://doi.org/10.15218/zjms.2024.012
32. Asadi F., Fatemi M. H. Modeling of cytochrome P-450 enzyme inhibitors activities using 2D/3D QSAR. SN Applied Sciences. 2020;2(9):1580. DOI: https://doi.org/10.1007/s42452-020-03318-5
33. Nawaz U., Noor M., Waheed A. Cytochrome P-450 CYP2C19 genetic polymorphism and its relation with clopidogrel resistance. The Journal of the Pakistan Medical Association. 2023;73(12):2388–2392. DOI: https://doi.org/10.47391/JPMA.8025
34. Pilat T. L., Kuzmina L. P., Kolyaskina M. M., Bezrukavnikova L. M. The role of the gastrointestinal tract in the processes of intoxication and detoxification of the body. Eksperimental'naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2020;(11):118–125. (In Russ.). DOI: https://doi.org/10.31146/1682-8658-ecg-183-11-118-125
35. Hsu M. H., Johnson E. F. Structural characterization of the homotropic cooperative binding of azamulin to human cytochrome P450 3A5. Journal of Biological Chemistry. 2022;298(5):101909. DOI: https://doi.org/10.1016/j.jbc.2022.101909
36. Grzegorzewski Ja., Bartsch F., Köller A., König M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Frontiers in Pharmacology. 2022;12: 752826. DOI: https://doi.org/10.3389/fphar.2021.752826
37. Kolisnyk I., Voloshin O., Savchenko I., Yanchevskyi O., Rashidi B. Enzymatic activity in microsomes, lipid peroxidation of mice hepatocytes under the sodium fluoride. Georgian Medical News. 2021;310:169–176.
38. Neumoina M. I., Shmakova T. V., Perfilova K. M., Neumoina N. V., Shutova I. V., Denisenko T. L., Troshina T. A. Effects of CYP2C19 Polymorphism on Metabolism and Effectiveness of Proton Pump Inhibitors: A Review of Clinical and Laboratory Studies. Public Health and Life Environment – PH&LE. 2021;(4):66–73. (In Russ.). DOI: https://doi.org/10.35627/2219-5238/2021-337-4-66-73
39. Tursunova N. V., Syrov V. N., Khushbaktova Z. A., Tornuev Yu. V., Klinnikova M. G. Monooxygenase system and no metabolism in liver microsomes of rats with toxic hepatitis and the effect of sesquiterpene lactones. Byulleten' eksperimental'noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine. 2021;172(8):157–161. (In Russ.). DOI: https://doi.org/10.47056/0365-9615-2021-172-8-157-161
40. Tursunova N. V., Syrov V. N., Khushbaktova Z. A., Tornuev Y. V., Klinnikova M. G. Monooxygenase System and NO Metabolism in Liver Microsomes of Rats with Toxic Hepatitis and the Effect of Sesquiterpene Lactones. Bulletin of Experimental Biology and Medicine. 2021;172(2):133–136. DOI: https://doi.org/10.1007/s10517-021-05349-3
41. Rakhmatov A. B., Khikmatov R. S., Yakubov M. D., Abdurakhimov A. A. Role of xenobiotic detoxifycation system gene polymorphism in the pathogenesis of cutaneous leishmaniasis. Dermatovenerologiya. Kosmetologiya. 2021;7(1):16–23. (In Russ.). DOI: https://doi.org/10.34883/PI.2021.7.1.011
42. Kontarov N. A., Pogarskaya I. V., Bakhromeeva A. A., Kontarova E. O., Yuminova N. V. Determination of thermodynamic binding parameters and type of interaction between the influenza virus hemagglutinin and phosphatidylcholine liposomes. Izvestiya GGTU. Meditsina, farmatsiya. 2022;(2):29–32. (In Russ.). URL: https://elibrary.ru/item.asp?id=48667019
43. Degraeve A. L., Haufroid V., Loriot A., Gatto L., Andries V., Vereecke L., et al. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. Microbiome. 2023;11(1):138. DOI: https://doi.org/10.1186/s40168-023-01578-y
44. Guillemot-Legris O., Muccioli G. G. The oxysterome and its receptors as pharmacological targets in inflammatory diseases. British Journal of Pharmacology. 2022;179(21):4917–4940. DOI: https://doi.org/10.1111/bph.15479
45. De Jong L. M., Jiskoot W., Manson M. L., Swen J. J. Distinct effects of inflammation on cytochrome P450 regulation and drug metabolism: Lessons from experimental models and a potential role for pharmacogenetics. Genes. 2020;11(12):1509. DOI: https://doi.org/10.3390/genes11121509
46. Popova O. S., Ponamarev V. S., Kostrova A. V., Agafonova L. A. Pharmacokinetic parameters of caffeine in laboratory animals in the context of assessing the functional state of the liver. Mezhdunarodnyy vestnik veterinarii = International Journal of Veterinary Medicine. 2023;(2):142–149. (In Russ.). DOI: https://doi.org/10.52419/issn2072-2419.2023.2.142
47. Khodzhaeva M. Yu., Abduakhadov A. Free radicals and their role in oxidative stress. Internauka. 2023;(36-1(306)):31–34. (In Russ.).
48. Squair C. Generalized Anxiety Disorder (GAD) in a teaching laboratory beagle: Presentation, relative contributions, and treatment. Journal of Veterinary Behavior: Clinical Applications and Research. 2023;64-65:1–8. DOI: https://doi.org/10.1016/j.jveb.2023.05.008
49. Rogaleva E., Semenenko K., Grin V., Svinkov A., Kuzminova E., Semenenko M. Evaluation of the Effectiveness of a New Selenium-Containing Drug at Acute Model Liver Damage in Poultry. Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East: Agricultural Innovation Systems. Ussuriysk: Springer, Cham, 2022. pp. 243–252. DOI: https://doi.org/10.1007/978-3-030-91405-9_26
50. Husain I., Khan I. A., Khan S. I., Bala K. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (Glycyrrhiza sp.). Food Frontiers. 2021;2(4):449–485. DOI: https://doi.org/10.1002/fft2.110
51. Schwier N. C., Cornelio C. K., Boylan P. M. A systematic review of the drug–drug interaction between statins and colchicine: Patient characteristics, etiologies, and clinical management strategies. Pharmacotherapy. 2022;42(4):320–333. DOI: https://doi.org/10.1002/phar.2674
52. Kapelemera A. M., Uang Y. S., Wang L. H., Wu T. Y., Lee F. Y., Tai L., Wang C. C., Lee C. J. Pharmacokinetic Herb-Drug Interactions of Xiang-Sha-Liu-Jun-Zi-Tang and Paclitaxel in Male Sprague Dawley Rats and Its Influence on Enzyme Kinetics in Human Liver Microsomes. Frontiers in Pharmacology. 2022;13:858007. DOI: https://doi.org/10.3389/fphar.2022.858007
53. Matoshin S. V., Shramko S. V. Polymorphism of xenobiotic biotransformation enzyme genes and their role in early pregnancy loss. Fundamental'naya i klinicheskaya meditsina = Fundamental and Clinical Medicine. 2023;8(4):133–141. (In Russ.). DOI: https://doi.org/10.23946/2500-0764-2023-8-4-134-141
54. Manis M. M., Petersen K., Roberts M. Z., Kyle J. A. Managing the Drug-Drug Interaction With Apixaban and Primidone: A Case Report. Hospital Pharmacy. 2023;58(4):345–349. DOI: https://doi.org/10.1177/00185787221150928
55. Sevior D. K., Pelkonen O., Ahokas J. T. Hepatocytes: the powerhouse of biotransformation. The international journal of biochemistry & cell biology. 2012;44(2):257–261. DOI: https://doi.org/10.1016/j.biocel.2011.11.011
56. Sychev D. A., Ashraf G. M., Svistunov A. A., Maksimov M. L., Tarasov V. V., Chubarev V. N., et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug design, development and therapy. 2018;12:1147–1156. DOI: https://doi.org/10.2147/DDDT.S149069
57. Baillie T. A., Rettie A. E. Role of biotransformation in drug-induced toxicity: influence of intra- and interspecies differences in drug metabolism. Drug metabolism and pharmacokinetics. 2011;26(1):15–29. DOI: https://doi.org/10.2133/dmpk.dmpk-10-rv-089
58. Rodríguez Arcas M. J., García-Jiménez E., Martínez-Martínez F., Conesa-Zamora P. Role of CYP450 in pharmacokinetics and pharmacogenetics of antihypertensive drugs. Farmacia hospitalaria. 2011;35(2):84–92. DOI: https://doi.org/10.1016/j.farma.2010.05.006
59. You M. W., Kim H. J., Lim H. S., Kim S. Y., Byun J. H., Kim K. W., et al. Assessment of Liver Function Using Pharmacokinetic Parameters of Gd-EOB-DTPA: Experimental Study in Rat Hepatectomy Model. Contrast media & molecular imaging. 2018:6321316. DOI: https://doi.org/10.1155/2018/6321316
60. Ponamarev V. S., Popova O. S., Kostrova A. V., Agafonova L. A. Clearance tests as a diagnosis method of hepatobiliary system pathologies in animals. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science EuroNorth-East. 2023;24(6):924–938. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2023.24.6.924-938.
Review
For citations:
Ponamarev V.S., Popova O.S., Ukrainskaya O.A. The role of the cytochrome system in the biotransformation of xenobiotics and pharmacaueticals (review). Agricultural Science Euro-North-East. 2025;26(1):21-39. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.1.21-39