Effect of pre-sowing seed treatment by electrophysical and chemical exposures on maize grain yields
https://doi.org/10.30766/2072-9081.2025.26.1.59-69
Abstract
The comparative effectiveness of pre-sowing treatment of maize (Zea mays L.) seeds by different methods is not sufficiently studied in the published results of scientific research. The aim of the study was to determine the effect of pre-sowing treatment of maize seeds with ultraviolet (UV) radiation, microwave (MW) radiation, gaseous ozone, fungicidal preparation Scarlet (control) on corn yield in the field experiment. The studies were carried out in the south of Rostov region in 2021–2023. Seeds of maize hybrid ‘Sapsan MV’ were treated with UV, MW and ozone on the day before sowing, and with fungicide on the day of sowing. It has been established that pre-sowing treatment of maize seeds by the studied methods increases its yield compared to semi-dry treatment with Scarlet preparation (0.4 l/t). Pre-sowing treatment of seeds with UV radiation (UVA 200–280 nm and UVC 315–380 nm, 10 min) had the greatest statistically significant effect on corn yield: +41.0 % to biological yield and +40.7 % to actual yield in comparison with treatment by fungicide. Ozone treatment (60 mg/m3 , 5 min) was slightly less effective than UV treatment: +39.9 % to biological yield and +36.3 % to actual yield. Microwave treatment (2450 MHz, 700 W, 1 min) of maize seeds showed the lowest efficiency: +25.6 % to biological yield and +24.1 % to actual yield. Increase in corn yield was achieved as a result of pre-sowing seed treatment by increasing the number of plants per unit area and the number of corncobs on them, as well as the mass of corn per corncob and the mass of 1000 grains. Methods based on the action of UV radiation and ozone are the most suitable to replace the traditional method of pre-sowing treatment of maize seeds (fungicide treatment). These methods provide the greatest increase in corn yield compared to fungicide treatment.
About the Authors
Viktor I. PakhomovRussian Federation
Viktor I. Pakhomov, DSc in Engineering, corresponding member of RAS, director
3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740
Andrey V. Braginets
Russian Federation
Andrey V. Braginets, PhD in Engineering, researcher
3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740
Oleg N. Bakhchevnikov
Russian Federation
Oleg N. Bakhchevnikov, PhD in Engineering, senior researcher
3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740
Dmitriy A. Maksak
Russian Federation
Dmitriy A. Maksak, engineer
3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740
References
1. Carrera-Castano G., Calleja-Cabrera J., Pernas M., Gomez L., Onate-Sanchez L. An updated overview on the regulation of seed germination. Plants. 2020;9(6):703. DOI: https://doi.org/10.3390/plants9060703
2. Los A., Ziuzina D., Bourke P. Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science. 2018;83(6):1484–1493. DOI: https://doi.org/10.1111/1750-3841.14181
3. Pilipenko N. G., Andreeva O. T., Sidorova L. P., Kharchenko N. Yu. The effect of seed treatment on diseaseresistance and productivity of grain crops. Kormoproizvodstvo = Forage Production. 2022;(1):37–42. (In Russ.). URL: https://elibrary.ru/item.asp?id=48177220
4. Dolzhenko V. I., Laptiev A. B. Modern range of plant protection means: biological efficiency and safety. Plodorodie. 2021;(3):71–75. (In Russ.). DOI: https://doi.org/10.25680/S19948603.2021.120.13
5. Araujo S. D. S., Paparella S., Dondi D., Bentivoglio A., Carbonera D., Balestrazzi A. Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science. 2016;7:646. DOI: https://doi.org/10.3389/fpls.2016.00646
6. Rifna E. J., Ramanan K. R., Mahendran R. Emerging technology applications for improving seed germination. Trends in Food Science & Technology. 2019;86:95–108. DOI: https://doi.org/10.1016/j.tifs.2019.02.029
7. Bera K., Dutta P., Sadhukhan S. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Reports. 2022;41(1):53–73. DOI: https://doi.org/10.1007/s00299-021-02798-y
8. Pandiselvam R., Mayookha V. P., Kothakota A., Sharmila L., Ramesh S. V., Bharathi C. P., Gomathy K., Srikanth V. Impact of ozone treatment on seed germination – a systematic review. Ozone: Science & Engineering. 2020;42(4):331–346. DOI: https://doi.org/10.1080/01919512.2019.1673697
9. Akdemir Evrendilek G. Ozone processing of corn grains: Effect on seed vigor and surface disinfection. Ozone: Science & Engineering. 2024;46(2):163–173. DOI: https://doi.org/10.1080/01919512.2023.2213252
10. Reed R. C., Bradford K. J., Khanday I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity. 2022;128(6):450–459. DOI: https://doi.org/10.1038/s41437-022-00497-2
11. Mondal S., Bose B. Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. Journal of Plant Nutrition. 2019;42(19):2577–2599. DOI: https://doi.org/10.1080/01904167.2019.1655032
12. Romero-Galindo R., Hernández-Aguilar C., Dominguez-Pacheco A., Godina-Nava J. J., Tsonchev R. I. Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review. International Agrophysics. 2022;35(4):389–410. DOI: https://doi.org/10.31545/intagr/144951
13. Villagómez-Aranda A. L., Feregrino-Pérez A. A., García-Ortega L. F., González-Chavira M. M., TorresPacheco I., Guevara-González R. G. Activating stress memory: Eustressors as potential tools for plant breeding. Plant Cell Reports. 2022;41(7):1481–1498. DOI: https://doi.org/10.1007/s00299-022-02858-x
14. Baskakov I. V., Orobinskiy V. I., Vasilenko V. V., Gievskiy A. M., Chernyshov A. V. Effect of ozonation during storage of corn seeds on the yield and quality of corn grain. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Voronezh state agrarian university. 2020;13(2):12–21. (In Russ.). DOI: https://doi.org/10.17238/issn2071-2243.2020.2.12
15. Upadhyay A. K., Chormule S. R., Kuiry B. M., Ram B. S., Pani S. Sh., Punia Ya. Effect of UV radiation on seeds physiological parameter: A review. Journal of Pharmacognosy and Phytochemistry. 2020:9(6):1877–1879. URL: https://www.phytojournal.com/archives?year=2020&vol=9&issue=6&ArticleId=13224
16. Sadeghianfar P., Nazari M., Backes G. Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants. 2019;8(2):49. DOI: https://doi.org/10.3390/plants8020049
17. Haque N., Agrawal A., Pati A. K. A mini review on effects of microwave on seed germination. Research Journal of Pharmacognosy and Phytochemistry. 2023;15(1):82–86. DOI: https://doi.org/10.52711/0975- 4385.2023.00012
18. Krivosheev G. Ya., Ignatiev A. S., Lupinoga D. R., Arzhenovskaya Yu. B. Comparative study of simple interline and three-way cross maize hybrids. Zernovoe khozyaystvo Rossii = Grain Economy of Russia. 2022;14(4):70–77. (In Russ.). DOI: https://doi.org/10.31367/2079-8725-2022-82-4-70-77
19. Krivosheev G. Ya., Ignatiev A. S. Correlation between quantitative traits that affect grain yield of maize hybrids. Zernovoe khozyaystvo Rossii = Grain Economy of Russia. 2021;(6):27–32. (In Russ.). DOI: https://doi.org/10.31367/2079-8725-2021-78-6-27-32
20. Baskakov I. V., Orobinskiy V. I., Vasilenko V. V., Gievskiy A. M., Chernyshov A. V. Rational operation modes for ozone presowing treatment of grain crop seeds. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Voronezh state agrarian university. 2020;13(4):105–114. (In Russ.). DOI: https://doi.org/10.17238/issn2071-2243.2020.4.105
21. Pakhomov A. I. Comparative analysis of microwave frequency devices for grain disinfection. Traktory i sel'khozmashiny. 2018;(1):21–26. (In Russ.). DOI: https://doi.org/10.17816/0321-4443-66373
22. Kurkina G. N. Effect of fungicide dressing agents on seed germination and maize yield, depending on sowing dates and weather conditions. Zemledelie i rastenievodstvo = Сrop Farming and Plant Growing. 2020;(1):36–42. (In Russ.) URL: https://crop.belal.by/jour/article/view/26.
Review
For citations:
Pakhomov V.I., Braginets A.V., Bakhchevnikov O.N., Maksak D.A. Effect of pre-sowing seed treatment by electrophysical and chemical exposures on maize grain yields. Agricultural Science Euro-North-East. 2025;26(1):59-69. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.1.59-69