Preview

Agricultural Science Euro-North-East

Advanced search

Effect of pre-sowing seed treatment by electrophysical and chemical exposures on maize grain yields

https://doi.org/10.30766/2072-9081.2025.26.1.59-69

Abstract

The comparative effectiveness of pre-sowing treatment of maize (Zea mays L.) seeds by different methods is not sufficiently studied in the published results of scientific research. The aim of the study was to determine the effect of pre-sowing treatment of maize seeds with ultraviolet (UV) radiation, microwave (MW) radiation, gaseous ozone, fungicidal preparation Scarlet (control) on corn yield in the field experiment. The studies were carried out in the south of Rostov region in 2021–2023. Seeds of maize hybrid ‘Sapsan MV’ were treated with UV, MW and ozone on the day before sowing, and with fungicide on the day of sowing. It has been established that pre-sowing treatment of maize seeds by the studied methods increases its yield compared to semi-dry treatment with Scarlet preparation (0.4 l/t). Pre-sowing treatment of seeds with UV radiation (UVA 200–280 nm and UVC 315–380 nm, 10 min) had the greatest statistically significant effect on corn yield: +41.0 % to biological yield and +40.7 % to actual yield in comparison with treatment by fungicide. Ozone treatment (60 mg/m3 , 5 min) was slightly less effective than UV treatment: +39.9 % to biological yield and +36.3 % to actual yield. Microwave treatment (2450 MHz, 700 W, 1 min) of maize seeds showed the lowest efficiency: +25.6 % to biological yield and +24.1 % to actual yield. Increase in corn yield was achieved as a result of pre-sowing seed treatment by increasing the number of plants per unit area and the number of corncobs on them, as well as the mass of corn per corncob and the mass of 1000 grains. Methods based on the action of UV radiation and ozone are the most suitable to replace the traditional method of pre-sowing treatment of maize seeds (fungicide treatment). These methods provide the greatest increase in corn yield compared to fungicide treatment.

About the Authors

Viktor I. Pakhomov
Agricultural Research Centre Donskoy
Russian Federation

Viktor I. Pakhomov, DSc in Engineering, corresponding member of RAS, director

3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740



Andrey V. Braginets
Agricultural Research Centre Donskoy
Russian Federation

Andrey V. Braginets, PhD in Engineering, researcher

3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740



Oleg N. Bakhchevnikov
Agricultural Research Centre Donskoy
Russian Federation

Oleg N. Bakhchevnikov, PhD in Engineering, senior researcher

3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740



Dmitriy A. Maksak
Agricultural Research Centre Donskoy
Russian Federation

Dmitriy A. Maksak, engineer

3 Nauchnyj Gorodok St., Zernograd, Rostov Region, 347740



References

1. Carrera-Castano G., Calleja-Cabrera J., Pernas M., Gomez L., Onate-Sanchez L. An updated overview on the regulation of seed germination. Plants. 2020;9(6):703. DOI: https://doi.org/10.3390/plants9060703

2. Los A., Ziuzina D., Bourke P. Current and future technologies for microbiological decontamination of cereal grains. Journal of Food Science. 2018;83(6):1484–1493. DOI: https://doi.org/10.1111/1750-3841.14181

3. Pilipenko N. G., Andreeva O. T., Sidorova L. P., Kharchenko N. Yu. The effect of seed treatment on diseaseresistance and productivity of grain crops. Kormoproizvodstvo = Forage Production. 2022;(1):37–42. (In Russ.). URL: https://elibrary.ru/item.asp?id=48177220

4. Dolzhenko V. I., Laptiev A. B. Modern range of plant protection means: biological efficiency and safety. Plodorodie. 2021;(3):71–75. (In Russ.). DOI: https://doi.org/10.25680/S19948603.2021.120.13

5. Araujo S. D. S., Paparella S., Dondi D., Bentivoglio A., Carbonera D., Balestrazzi A. Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science. 2016;7:646. DOI: https://doi.org/10.3389/fpls.2016.00646

6. Rifna E. J., Ramanan K. R., Mahendran R. Emerging technology applications for improving seed germination. Trends in Food Science & Technology. 2019;86:95–108. DOI: https://doi.org/10.1016/j.tifs.2019.02.029

7. Bera K., Dutta P., Sadhukhan S. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Reports. 2022;41(1):53–73. DOI: https://doi.org/10.1007/s00299-021-02798-y

8. Pandiselvam R., Mayookha V. P., Kothakota A., Sharmila L., Ramesh S. V., Bharathi C. P., Gomathy K., Srikanth V. Impact of ozone treatment on seed germination – a systematic review. Ozone: Science & Engineering. 2020;42(4):331–346. DOI: https://doi.org/10.1080/01919512.2019.1673697

9. Akdemir Evrendilek G. Ozone processing of corn grains: Effect on seed vigor and surface disinfection. Ozone: Science & Engineering. 2024;46(2):163–173. DOI: https://doi.org/10.1080/01919512.2023.2213252

10. Reed R. C., Bradford K. J., Khanday I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity. 2022;128(6):450–459. DOI: https://doi.org/10.1038/s41437-022-00497-2

11. Mondal S., Bose B. Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. Journal of Plant Nutrition. 2019;42(19):2577–2599. DOI: https://doi.org/10.1080/01904167.2019.1655032

12. Romero-Galindo R., Hernández-Aguilar C., Dominguez-Pacheco A., Godina-Nava J. J., Tsonchev R. I. Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review. International Agrophysics. 2022;35(4):389–410. DOI: https://doi.org/10.31545/intagr/144951

13. Villagómez-Aranda A. L., Feregrino-Pérez A. A., García-Ortega L. F., González-Chavira M. M., TorresPacheco I., Guevara-González R. G. Activating stress memory: Eustressors as potential tools for plant breeding. Plant Cell Reports. 2022;41(7):1481–1498. DOI: https://doi.org/10.1007/s00299-022-02858-x

14. Baskakov I. V., Orobinskiy V. I., Vasilenko V. V., Gievskiy A. M., Chernyshov A. V. Effect of ozonation during storage of corn seeds on the yield and quality of corn grain. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Voronezh state agrarian university. 2020;13(2):12–21. (In Russ.). DOI: https://doi.org/10.17238/issn2071-2243.2020.2.12

15. Upadhyay A. K., Chormule S. R., Kuiry B. M., Ram B. S., Pani S. Sh., Punia Ya. Effect of UV radiation on seeds physiological parameter: A review. Journal of Pharmacognosy and Phytochemistry. 2020:9(6):1877–1879. URL: https://www.phytojournal.com/archives?year=2020&vol=9&issue=6&ArticleId=13224

16. Sadeghianfar P., Nazari M., Backes G. Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants. 2019;8(2):49. DOI: https://doi.org/10.3390/plants8020049

17. Haque N., Agrawal A., Pati A. K. A mini review on effects of microwave on seed germination. Research Journal of Pharmacognosy and Phytochemistry. 2023;15(1):82–86. DOI: https://doi.org/10.52711/0975- 4385.2023.00012

18. Krivosheev G. Ya., Ignatiev A. S., Lupinoga D. R., Arzhenovskaya Yu. B. Comparative study of simple interline and three-way cross maize hybrids. Zernovoe khozyaystvo Rossii = Grain Economy of Russia. 2022;14(4):70–77. (In Russ.). DOI: https://doi.org/10.31367/2079-8725-2022-82-4-70-77

19. Krivosheev G. Ya., Ignatiev A. S. Correlation between quantitative traits that affect grain yield of maize hybrids. Zernovoe khozyaystvo Rossii = Grain Economy of Russia. 2021;(6):27–32. (In Russ.). DOI: https://doi.org/10.31367/2079-8725-2021-78-6-27-32

20. Baskakov I. V., Orobinskiy V. I., Vasilenko V. V., Gievskiy A. M., Chernyshov A. V. Rational operation modes for ozone presowing treatment of grain crop seeds. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Voronezh state agrarian university. 2020;13(4):105–114. (In Russ.). DOI: https://doi.org/10.17238/issn2071-2243.2020.4.105

21. Pakhomov A. I. Comparative analysis of microwave frequency devices for grain disinfection. Traktory i sel'khozmashiny. 2018;(1):21–26. (In Russ.). DOI: https://doi.org/10.17816/0321-4443-66373

22. Kurkina G. N. Effect of fungicide dressing agents on seed germination and maize yield, depending on sowing dates and weather conditions. Zemledelie i rastenievodstvo = Сrop Farming and Plant Growing. 2020;(1):36–42. (In Russ.) URL: https://crop.belal.by/jour/article/view/26.


Review

For citations:


Pakhomov V.I., Braginets A.V., Bakhchevnikov O.N., Maksak D.A. Effect of pre-sowing seed treatment by electrophysical and chemical exposures on maize grain yields. Agricultural Science Euro-North-East. 2025;26(1):59-69. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.1.59-69

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)