Rumen metabolism and gas formation in sheep fed different fat sources
https://doi.org/10.30766/2072-9081.2025.26.2.379-387
Abstract
The aim of the work was to study the effect of various fat sources in sheep nutrition on the indices of rumen digestion and the release of methane and carbon dioxide using the in vivo method. The experiment was conducted in the physiological yard of the L.K. Ernst Federal Research Center for Animal Husbandry in 2024 on Romanov rams and crossbreeds with Katadin with chronic rumen fistulas using the group-period method. During the control period, animals received the main diet (hay and concentrates), in the I experimental period – in addition to it, palm oil, in the II experimental – sunflower oil, in the III experimental – fat from the larvae of the Hermetia illucens fly at a dosage of 0.5 % of the DM (dry matter) of the diet (7.5 g per day). Animals received the daily amount of feed in 2 doses. At the end of each period, all animals were examined for rumen metabolism dynamics and gas emission in vivo. Supplementation of various fat sources in the specified dosage did not have a negative effect on the consumption of basic feed. The use of fly larvae fat in sheep diet contributed to an increase in the concentration of VFA (volatile fatty acids) by 29 % (p<0.01), a decrease in the level of ammonia nitrogen by 12.91 %. The use of palm and vegetable fats led to a decrease in the concentration of ammonia nitrogen in the rumen by 28.7 % (p<0.05) and 29.5 % (p<0.05) compared to the control, respectively. During the control period, 20.66 l of methane were excreted from the sheep's body, in the I experimental period it was 12.0 % less (18.18 l), in the II experimental period – 6.20 % less (19.38 l), in the III experimental period – 20.33 % less (16.46 l) (p<0.01). Using additional fat sources in ruminant feed may be an effective way to reduce greenhouse gas emissions.
About the Authors
N. V. BogolyubovaRussian Federation
Nadezhda V. Bogolyubova, DSc in Biological Science, leading researcher, Head of the Department of Physiology and Biochemistry of Farm Animals
Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132
V. A. Devyatkin
Russian Federation
Vladimir A. Devyatkin, PhD in Agricultural Science, senior researcher, the Department of Physiology and Biochemistry of Farm Animals
Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132
R. V. Nekrasov
Russian Federation
Roman V. Nekrasov, DSc in Agricultural Science, professor of the Russian Academy of Sciences, Head of the Department of Feeding Farm Animals
Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132
References
1. Calabrò P. S. Greenhouse gases emission from municipal waste management: The role of separate collection. Waste Managment. 2009;29(7):2178–2187. DOI: https://doi.org/10.1016/j.wasman.2009.02.011
2. Patra A. K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environmental Monitoring and Assessment. 2012;184:1929–1952. DOI: https://doi.org/10.1007/s10661-011-2090-y
3. Palangi V., Macit M. Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste and Biomass Valorization. 2021;12:4825–4834. DOI: https://doi.org/10.1007/s12649-021-01347-8
4. Palangi V., Lackner M. Management of enteric methane emissions in ruminants using feed additives: A review. Animals. 2022;12(24):3452. DOI: https://doi.org/10.3390/ani12243452
5. Gridneva T. T. Emission of harmful gases livestock product. Vestnik Vserossiyskogo nauchno-issledovatel'skogo instituta mekhanizatsii zhivotnovodstva. 2012;(4(8)):61–69. (In Russ.).
6. Hristov A. N., Firkins J., Oh. J., Dijkstra J., Kebreab E., Waghorn G., et al. Special topics–Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science. 2013;91(11):5045–5069. DOI: https://doi.org/10.2527/jas.2013-6583
7. Palangi V., Taghizadeh A., Abachi S., Lackner M. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability. 2022;14(20):13229. DOI: https://doi.org/10.3390/su142013229
8. Arndt C., Hristov A. N., Price W. J., McClelland S. C., Pelaez A. M., Cueva S. F., et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 C target by 2030 but not 2050. Proceedings of the National Academy of Sciences. 2022;119(20):e2111294119. DOI: https://doi.org/10.1073/pnas.2111294119
9. Sun J., Zhao G., Li M. M. Using nutritional strategies to mitigate ruminal methane emissions from ruminants. Frontiers of Agricultural Science and Engineering. 2023;10(3):390–402. DOI: https://doi.org/10.15302/j-fase-2023504
10. Lambo M. T., Ma H., Liu R., Dai B., Zhang Y., Li Y. Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants' enteric methane emission. Animal. 2024;18(4):101134. DOI: https://doi.org/10.1016/j.animal.2024.101134
11. Palmquist D. L., Jenkins T. C. A 100-year review: Fat feeding of dairy cows. Journal of Dairy Science. 2017;100(12):10061–10077. DOI: https://doi.org/10.3168/jds.2017-12924
12. Roque B. M., Venegas M., Kinley R. D., de Nys R., Duarte T. L., Yang X., Kebreab E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE. 2021;16(3):e0247820. DOI: https://doi.org/10.1371/journal.pone.0247820
13. Ramos-Morales E., de la Fuente G., Duval S., Wehrli C., Bouillon M., Lahmann M., et al. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Frontiers of Microbiology. 2017;8:399. DOI: https://doi.org/10.3389/fmicb.2017.00399
14. Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. Journal of Dairy Science. 2019;102(5):3781–3804. DOI: https://doi.org/10.3168/jds.2018-14985
15. Jia P., Dong L. F., Tu Y., Diao Q. Y. Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows. Microbiome. 2023;11(1):229. DOI: https://doi.org/10.1186/s40168-023-01654-3
16. Króliczewska B., Pecka-Kiełb E., Bujok J. Strategies used to reduce methane emissions from ruminants: Controversies and issues. Agriculture. 2023;13(3):602. DOI: https://doi.org/10.3390/agriculture13030602
17. Graham A., Thorn C., McDonagh M., O'Donnell C., Nolan S., Kirwan S. F., et al. Development and in vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Science of the total environment. 2025;963:177598. DOI: https://doi.org/10.1016/j.scitotenv.2024.177598
18. Blaxter K. L., Czerkawski J. Modification of the methane production of the sheep by supplementation of ITS diet. Journal of the Science of Food and Agriculture. 1966;17(9):417–421. DOI: https://doi.org/10.1002/jsfa.2740170907
19. Patra A. K. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livestock Science. 2014;162:97–103. DOI: https://doi.org/10.1016/j.livsci.2014.01.007
20. Toprak N. N. Do fats reduce methane emission by ruminants? – A review. Animal Science Papers and Reports. 2015;33(4):305–321. URL: https://www.researchgate.net/publication/284803844_Do_fats_reduce_methane_emission_by_ruminants_-_A_review
21. Szczechowiak J., Szkudelska K., Szumacher-Strabel M., Sadkowski S., Gwozdz K., El-Sherbiny M., et al. Blood hormones, metabolic parameters and fatty acid proportion in dairy cows fed condensed tannins and oils blend. Annals of Animal Science. 2018;18(1):155–166. DOI: https://doi.org/10.1515/aoas-2017-0039
22. Vargas J. E., Andrés S., López-Ferreras L., Snelling Т. J., Yáñez-Ruíz D. R., García-Estrada C., Lópezet S. Dietary Supplemental Plant Oils Reduce Methanogenesis From Anaerobic Microbial Fermentation in the Rumen. Scientific Reports. 2020;10:1613. DOI: https://doi.org/10.1038/s41598-020-58401-z
23. Yanza Y., Szumacher‐Strabel R. M., Jayanegara A., Kasenta A. M., Gao M., Huang H., et al. The effects of dietary medium‐chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta‐analysis. Journal of animal physiology and animal nutrition. 2021;105(5):874–889. DOI: https://doi.org/10.1111/jpn.13367
24. Nekrasov R. V., Ivanov G. A., Chabaev M. G., Zelenchenkova A. A., Bogolyubova N. V., Nikanova D. A., et al. Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals. 2022;12(16):2118. DOI: https://doi.org/10.3390/ani12162118
25. Prachumchai R., Cherdthong A. Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation. Animals. 2023;13(15):2416. DOI: https://doi.org/10.3390/ani13152416
26. Renna M., Coppa M., Lussiana C., Le Morvan A., Gasco L., Maxin G. Full-fat insect meals in ruminant nutrition: in vitro rumen fermentation characteristics and lipid biohydrogenation. Journal of Animal Science and Biotechnology. 2022;13(1):138. DOI: https://doi.org/10.1186/s40104-022-00792-2
27. Jayanegara A., Gustanti R., Ridwan R., Widyastuti Y. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Italian Journal of Animal Science. 2020;19(1):1310–1317. DOI: https://doi.org/10.1080/1828051X.2020.1841571
28. Prachumchai R., Suntara C., Kanakai N., Cherdthong A. Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai‐Indigenous Steers. Journal of Animal Physiology and Animal Nutrition. 2025;1–9. DOI: https://doi.org/10.1111/jpn.14101
29. Beck M., Thompson L., Williams G., Place S., Gunter S., Reuter R. Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Animal Feed Science and Technology. 2019;254:114210. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114210
30. Drehmel O., Brown-Brandl T., Judy J., Fernando S. C., Miller P. S., Hales K., Kononoff P. J. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle. Journal of Dairy Science. 2018;101(9):7892–7906. DOI: https://doi.org/10.3168/jds.2017-13822
31. Beauchemin K. A., Ungerfeld E. M., Eckard R. J., Wang M. Fifty years of research on rumen methano- genesis: lessons learned and future challenges for mitigation. Animal. 2020;14(S1):s2–s16. DOI: https://doi.org/10.1017/S1751731119003100
32. Hervás G., Boussalia Y., Labbouz Y., Della Badia A., Toral P. G., Frutos P. Insect oils and chitosan in sheep feeding: effects on in vitro ruminal biohydrogenation and fermentation. Animal Feed Science and Technology. 2022;285:115222. DOI: https://doi.org/10.1016/j.anifeedsci.2022.115222
33. Min B. R., Solaiman S., Waldrip H. M., Parker D., Todd R. W., Brauer D. Dietary mitigation of enteric methane emissions from ruminants: a review of plant tannin mitigation options. Animal Nutrition. 2020;6(3):231–246. DOI: https://doi.org/10.1016/j.aninu.2020.05.002
34. Grainger C., Beauchemin K. A. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology. 2011;166-167:308–320. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.021
35. Boland T. M., Pierce K. M., Kelly A. K., Kenny D. A., Lynch M. B., Waters S. M., Whelan S. J., McKay Z. C. Feed intake, methane emissions, milk production and rumen methanogen populations of grazing dairy cows supplemented with various C 18 fatty acid sources. Animals. 2020:10(12):2380. DOI: https://doi.org/10.3390/ani10122380
Review
For citations:
Bogolyubova N.V., Devyatkin V.A., Nekrasov R.V. Rumen metabolism and gas formation in sheep fed different fat sources. Agricultural Science Euro-North-East. 2025;26(2):379–387. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.2.379-387