Selection of streptomyces chitinolytics for biocontrol of fungal phytopathogens
https://doi.org/10.30766/2072-9081.2025.26.3.595-607
Abstract
Interest in chitinolytically active microorganisms is related to the possibility of their participation in protecting plants from fungal infections, since chitin is a structural component of fungal cell walls. Among the bacteria, the most active chitinolytics include representatives of the genus Streptomyces. The use of streptomyces in the fight against harmful phytopathogens of agricultural crops is due to the ability to synthesize a wide range of biologically active compounds, as well as environmental safety, since streptomyces are a natural component of any agrocenosis. The paper studied the distribution of streptomyces chitinolytics among natural isolates from the soils of the Vyatka-Kama Urals. Chitinolytically active cultures were screened using functional (phenotypic) and genetic predictors. The assessment of functional activity showed that the proportion of chitin-actively decomposing strains with an enzymatic index of EI≥2 was about 40 % in the studied soils. Strains of S. griseoaurantiacus and S. thermocarboxydus species decomposed chitin most actively. The genetic determinants of chitinolysis – the genes of chitinase A, chitinase C, and chitin-binding proteins – were determined in the genomes of natural isolates using PCR using specially developed specific primers. It has been established that individual genetic determinants of chitinolysis (chiA, chiC, chb) are much more widespread in streptomyces than chitinolysis detected in functional tests. This is due to the inducible nature of the chitinase enzyme and the dependence of its activity on exogenous factors. Chitinolysis of local isolates was compared with the activity of strains isolated from the soil of the arid zone. On the 7th day of growth of local isolates in the immersed culture, chitinase activity varied from 15.83±12.01 to 50.63±38.81 U/ml, whereas in the strain isolated from arid soil, the enzyme activity in the same period was 76.46±42.12 U/ml. Evaluation of the antifungal effect of streptomyces chitinolytics against pathogens of alternariasis, helminthosporiosis and fusarium root rot of grain crops revealed local strains promising for use in agrobiotechnology.
Keywords
About the Authors
I. G. ShirokikhRussian Federation
Irina G. Shirokikh, DSc in Biological Science, chief researcher, Head of the Laboratory
Lenin str., 166a, Kirov, 610007
N. A. Bokov
Russian Federation
Nikita A. Bokov, graduate student, junior researcher
Lenin str., 166a, Kirov, 610007
A. V. Bakulina
Russian Federation
Anna V. Bakulina, PhD in Biological Science, senior researcher, Head of the Laboratory of Molecular Biology and Breeding
Lenin str., 166a, Kirov, 610007
E. A. Bessolitsyna
Russian Federation
Ekaterina A. Bessolitsyna, PhD in Biological Science, senior researcher, the Laboratory of Molecular Biology and Breeding
Lenin str., 166a, Kirov, 610007
References
1. Bhattacharya D., Nagpure A., Gupta R. K. Bacterial chitinases: properties and potential. Critical reviews in biotechnology. 2007;27(1):21–28. DOI: https://doi.org/10.1080/07388550601168223
2. Zargar V., Asghari M., Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2015;2(3):204–226. DOI: https://doi.org/10.1002/cben.201400025
3. Nagpure A., Choudhary B., Gupta R. K. Chitinases: in agriculture and human healthcare. Critical reviews in biotechnology. 2014;34(3):215–232. DOI: https://doi.org/10.3109/07388551.2013.790874
4. Kumar M., Chakdar H., Pandiyan K., Thapa S., Shahid M., Singh A. et al. Bacterial chitinases: genetics, engineering and applications. World Journal of Microbiology and Biotechnology. 2022;38(12):252. DOI: https://doi.org/10.1007/s11274-022-03444-9
5. Teregulova G. A., Manucharova N. A., Urazbakhtina N. A., Zhemchu-zhina N. S., Evtushenko L. I., Stepanov A. L. Antimicrobial activity of specialised metabolites of soil streptomycetes-chitinolytic. Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie = Lomonosov Soil Science Journal. 2024;(1):51–60. (In Russ.). DOI: https://doi.org/10.55959/MSU0137-0944-17-2024-79-1-51-60
6. Vinogradova K. A., Sharkova T. S., Aleksandrova A. V., Kozhevin P. A. Analysis of interactions between populations of soil fungi and actinomycetes. Mikologiya i fitopatologiya = Mycology and Phytopathology. 2005;39(3):28–40. (In Russ.).
7. Vinogradova K. A., Kozhevin P. A. Interaction between actinomycetes and soil fungi in relation to the biological control of phytopathogens. Mikologiya i fitopatologiya = Mycology and Phytopathology. 2011;45(4):289–302. (In Russ.). URL: https://elibrary.ru/item.asp?id=16515556
8. Da Cruz Silva G., Kitano T. I., de Figueiredo Ribeiro I. A., Lacava P. T. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Frontiers in Soil Science. 2022;2:833181. DOI: https://doi.org/10.3389/fsoil.2022.833181
9. Wang M., Li H., Li J., Zhang W., Zhang J. Streptomyces strains and their metabolites for biocontrol of phytopathogens in agriculture. Journal of Agricultural and Food Chemistry. 2024;72(4):2077–2088. DOI: https://doi.org/10.1021/acs.jafc.3c08265
10. Rajendran K., Krishnamoorthy M., Karuppiah K., Ethiraj K., Sekar S. Chitinase from Streptomyces mutabilis as an effective eco-friendly biocontrol agent. Applied Biochemistry and Biotechnology. 2024;196(1):18–31. DOI: https://doi.org/10.1007/s12010-023-04489-8
11. Shekhar N., Bhattacharya D., Kumar D., Gupta R. K. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Canadian Journal of Microbiology. 2006;52(9):805–808. DOI: https://doi.org/10.1139/w06-035
12. Zvyagintsev D. G., Zenova G. M. Soil biology. Moscow: Izdatel'stvo MGU, 2001. 356 p.
13. Watve M. G., Tickoo R., Jog M. M., Bhole B. D. How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology. 2001;176(5):386–390. DOI: https://doi.org/10.1007/s002030100345
14. Ekundayo F. O., Folorunsho A. E., Ibisanmi T. A., Olabanji O. B. Antifungal activity of chitinase produced by Streptomyces species isolated from grassland soils in Futa Area, Akure. Bulletin of the National Research Centre. 2022;46(1):95. DOI: https://doi.org/10.1186/s42269-022-00782-4
15. Rashad Y. M., Al-Askar A. A., Ghoneem K. M., Saber W. I. A., Hafez E. E. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 2017;45(2):227–237. DOI: https://doi.org/10.1007/s12600-017-0580-3
16. Abo-Zaid G., Abdelkhalek A., Matar S., Darwish M., Abdel-Gayed M. Application of bio-friendly formulations of chitinase-producing Streptomyces cellulosae Actino 48 for controlling peanut soil-borne diseases caused by Sclerotium rolfsii. Journal of Fungi. 2021;7(3):167. DOI: https://doi.org/10.3390/jof7030167
17. Ivanova A. A., Wegner C.-E., Kim Y., Liesack W., Dedysh S. N. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Molecular Ecology. 2016;25(18):4818–4835. DOI: https://doi.org/10.1111/mec.13806
18. Mukhammadiev R. S., Mukhammadiev R. S., Solov'eva A. S., Valiullin L. R., Skvortsov E. V. Screening of microorganisms with chitinase activity. Aktual'nye voprosy sovershenstvovaniya tekhnologii proizvodstva i pererabotki produktsii sel'skogo khozyaystva. 2020;22:470–474. (In Russ.). URL: https://elibrary.ru/rmiiku
19. Koteshwara A. Simple Methods for the Preparation of Colloidal Chitin, Cell Free Supernatant and Estimation of Laminarinase. Bio-Protocol. 2021;11(19):e4176. DOI: https://doi.org/10.21769/BioProtoc.4176
20. Shivalee A., Divatar M., Sandhya G., Sarfaraz A., Lingappa K. Isolation and screening of soil microbes for extracellular chitinase. Journal of Advanced Scientific Research. 2016;7(2):10 –14. URL: https://www.researchgate.net/publication/303762490_ISOLATION_AND_SCREENING_OF_SOIL_MICROBES_FOR_EXTRACELLULAR_CHITINASE_ACTIVITY
21. Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 1959;31(3):426–442. DOI: https://doi.org/10.1021/ac60147a030
22. Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1983.
23. Saito A., Ishizaka M., Francisco P. B., Fujii T., Miyashita K. Transcriptional coregulation of five chitinase genes scattered on the Streptomyces coelicolor A3(2) chromosome. Microbiology. 2000;146(11):2937–2946. DOI: https://doi.org/10.1099/00221287-146-11-2937
24. Lacombe-Harvey M. È., Brzezinski R., Beaulieu C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Applied Microbiology and Biotechnology. 2018;102(17):7219–7230. DOI: https://doi.org/10.1007/s00253-018-9149-4
25. Kolbe S., Fischer S., Becirevic A., Hinz P., Schrempf H. The Streptomyces reticuli α-chitin-binding protein CHB2 and its gene. Microbiology. 1998;144(5):1291–1297. DOI: https://doi.org/10.1099/00221287-144-5-1291
26. Agostoni M., Hangasky J. A., Marletta M. A. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiology and Molecular Biology Reviews. 2017;81(3):e00015-17. DOI: https://doi.org/10.1128/MMBR.00015-17
27. Meriem G., Mahmoud K. Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Annals of Microbiology. 2017;67(2):175–183. DOI: https://doi.org/10.1007/s13213-016-1249-8
28. Shirokikh I. G., Nazarova Ya. I., Bokov N. A., Alalykin A. A., Shirokikh A. A. New Agronomically Valuable Strains of the Genus Streptomyces and Their Biochemical Characteristics. Applied Biochemistry and Microbiology. 2025;61(1):184–193. DOI: https://doi.org/10.1134/S0003683824605110
Supplementary files
Review
For citations:
Shirokikh I.G., Bokov N.A., Bakulina A.V., Bessolitsyna E.A. Selection of streptomyces chitinolytics for biocontrol of fungal phytopathogens. Agricultural Science Euro-North-East. 2025;26(3):595-607. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.3.595-607