Preview

Agricultural Science Euro-North-East

Advanced search

Classical and modern approaches to the study of organic matter of sod-podzolic soils in the Middle Pre-Urals (analytical review)

https://doi.org/10.30766/2072-9081.2025.26.3.470-498

Abstract

Experimental data of scientists of Perm Agricultural Research Institute – branch of PFRC UB RAS obtained for 2000–2024 are presented, scientific literature for 1990–2024 of Russian and foreign specialists on the study of soil organic matter (SOM) is summarized and analyzed. Multidirectional tendencies of organic carbon change in soil compared to the initial level at change of land use regime were revealed: decrease at intensive tillage and absence of fertilizers, preservation and increase – at input of large amount of organic matter with biomass of cultivated crops in crop rotation and organic fertilizers. The influence of land use practices on the content of different fractions of transformed organic matter is shown. It has been established that in soil-climatic conditions of the Middle Urals the losses of organic carbon in the process of mineralization during the vegetation period can potentially make from 2.37 to 3.21 % of its total content. High carbon sequestering potential of sod-podzolic heavy loamy soil was determined. Carbon sequestration by crops of crop rotation and perennial grasses was assessed. It was revealed that in the process of photosynthesis eastern galega converts from atmosphere to plant biomass more than 30 t/ha of CO2 or 8.4 t C/ha per year, safflower leuzea – 24.3–41.3 t/ha of CO2 (6.8–11.5 t/ha). Due to the large amount and favourable biochemical composition of crop-root residues of perennial fodder crops, accumulation and deposition of organic carbon in the soil is observed. The study of soil microbiome of sod-podzolic heavy loamy soils of the Middle Urals revealed 17 phylums consisting of Archaea (1 phylum) and Bacteria (16 phylums) domains. Differences in the composition of soil microorganisms in soils of different types of land use were found. Prospects for further study of SOM are outlined in connection with the problem of global climate change, as well as the development of instrumental high-precision methods of analysis.

About the Authors

N. E. Zavyalova
Perm Agricultural Research Institute – branch of Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Nina E. Zavyalova, DSc in Biological Science, chief researcher 

12, Kultury Street, Lobanovo village, Perm Region, 614532



V. R. Yamaltdinova
Perm Agricultural Research Institute – branch of Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Venera R. Yamaltdinova, PhD in Agricultural Science, senior researcher 

12, Kultury Street, Lobanovo village, Perm Region, 614532



D. G. Shishkov
Perm Agricultural Research Institute – branch of Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Danil G. Shishkov, researcher 

12, Kultury Street, Lobanovo village, Perm Region, 614532



S. S. Scryabina
Perm Agricultural Research Institute – branch of Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Sofia S. Scryabina, junior researcher 

12, Kultury Street, Lobanovo village, Perm Region, 614532



I. V. Kazakova
Perm Agricultural Research Institute – branch of Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Inna V. Kazakova, junior researcher 

12, Kultury Street, Lobanovo village, Perm Region, 614532



References

1. Semenov V. M., Kogut B. M. Soil organic matter. Moscow: GEOS, 2015. 233 p.

2. Ivanov A. L., Kogut B. M., Semenov V. M., Turina Oberlander M., Waksman Schanbacher N. The Development of Theory on Humus and Soil Organic Matter: from Turin and Waksman to Present Days. Byulleten' Pochvennogo instituta im. V. V. Dokuchaeva = Dokuchaev Soil Bulletin. 2017;(90):3–38. (In Russ.). DOI: https://doi.org/10.19047/0136-1694-2017-90-3-38

3. Sokolov M. S., Spiridonov Yu. A., Toropova E. Yu., Glinushkin A. P., Semenov A. M. Environmental and phytosanitary functions of soil organic matter (Problem-analytic review). Agrokhimiya. 2018;(5):79–96. (In Russ.). DOI: https://doi.org/10.7868/S0002188118050113

4. Kudeyarov V. N. The agrobiogeochemical cycles of carbon and nitrogen of Russian croplands. Agrokhimiya. 2019;(12):3–15. (In Russ.). DOI: https://doi.org/10.1134/S000218811912007X

5. Semenov V. M., Tulina A. S. Comparative characterization of the mineralizable organic matter pool in the soils of natural and agricultural ecosystems. Agrokhimiya. 2011;(12):53–63. (In Russ.). URL: https://elibrary.ru/item.asp?id=17289782

6. Kogut B. M., Semenov V. M., Lukin S. M., Sharkov I. N. A method for determining the parameters of transformed and inert organic carbon in soils: Patent RF, no. 2519149, 2014. URL: https://www1.fips.ru/registers-doc-view/fips_servlet

7. Mamontov V. G., Afanasyev R. A., Sokolovskaya E. L. Labile humus substances – a special group of organic compounds of ordinary chernozem. Plodorodie. 2018;(5):15–19. (In Russ.). URL: https://elibrary.ru/item.asp?id=36286590

8. Mamontov V. G., Rodionova L. P., Bykovskiy F. F., Siradzh A. Labile soil organic matter: Nomenclature scheme, methods of study and agroecological functions. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2000;(4):93–108. (In Russ.).

9. Mamontov V. G., Rodionova L. P., Bruevich O. M. Levels of content of labile humus substances in arable soils. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2009;(4):121–123. (In Russ.). URL: https://elibrary.ru/item.asp?id=13102344

10. Torikov V. E., Melnikova O. V., Sidorova E. Yu., Melnikov D. M. Change of grey forest soil fertility in field crop rotation. Agrokhimicheskiy vestnik = Agrochemical Herald. 2019;(2):6–9. (In Russ.). DOI: https://doi.org/10.24411/0235-2516-2019-10018

11. Rusakova I. V. Change in the content of total and easily degradable organic matter in sod-podzolic soil with continuous application of straw. Agrokhimiya. 2022;(10):28–37. (In Russ.). DOI: https://doi.org/10.31857/S000218812210009X

12. Rusakova I. V. Comparative evaluation of the effects of traditional and biologized arable systems on agrochemical and biological properties and biological quality of organic matter of gray forest soil in Vladimir opolye. Agrokhimiya. 2021;(12):15–22. (In Russ.). DOI: https://doi.org/10.31857/S0002188121120127

13. Semenov V. M., Lebedeva T. N., Pautova N. B. Particulate organic matter in noncultivated and arable soils. Pochvovedenie = Eurasian Soil Science. 2019;(4):440–450. (In Russ.). DOI: https://doi.org/10.1134/S0032180X19040130

14. Semenov V. M., Lebedeva T. N., Sokolova D. A., Zinyakovaa N. B., Lopes de Gerenyu V. O., Semenov M. V. Measurement of the soil organic carbon pools isolated using bio-physical-chemical fractionation methods. Pochvovedenie = Eurasian Soil Science. 2023;(9):1155–1172. (In Russ.). DOI: https://doi.org/10.31857/S0032180X23600427

15. Fokin A. D. Sustainability of soils and ground ecosystems: Approaches to the systematization of concepts and assessment. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 1995;(2):71–85. (In Russ.).

16. Kershens M. The significance of humus for soil fertility and nitrogen cycle. Pochvovedenie = Eurasian Soil Science. 1992;(10):122–131. (In Russ.).

17. Kudeyarov V. N. Soil respiration and carbon sequestration: a review. Pochvovedenie = Eurasian Soil Science. 2023;(9):1011–1022. (In Russ.). DOI: https://doi.org/10.31857/S0032180X23990017

18. Sharkov I. N., Antipina P. V. Some aspects of carbon sequestration capacity of arable soils. Pochvy i okruzhayushchaya sreda = The Journal of Soils and Environment. 2022;5(2):3. (In Russ.). DOI: https://doi.org/10.31251/pos.v5i2.175

19. Glinushkin A. P., Sokolov A. A. Role of soil humus in the adaptation of agrosphere to land climate change. Uspekhi sovremennoy nauki. 2017;2(9):15–19. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=29905670

20. Sychev V. G., Naliukhin A. N. Study of flows of carbon and nitrogen in long-term field experiments of the geoset with the purpose of reducing greenhouse gas emissions and increasing the deposition of carbon dioxide by agrocenoses. Plodorodie. 2021;(6):38–41. (In Russ.). DOI: https://doi.org/10.25680/S19948603.2021.123.10

21. Zavyalova N. E. Carbon reserves and carbon protective capacity of sod-podzolic soil in natural and agricultural ecosystems of the Pre-Urals. Pochvovedenie = Eurasian Soil Science. 2022;(8):1046–1055. (In Russ.). DOI: https://doi.org/10.31857/S0032180X22080160

22. Zavyalova N. E., Fomin D. S., Teterlev I. S. Effect of crop rotations and monoculture on agrochemical propertiesand nitrogen regime of sod-podzolic soil of the Cis-Ural region. Agrokhimiya. 2019;(1):5–10. (In Russ.). DOI: https://doi.org/10.1134/S0002188119010162

23. Shults E., Kershens M. Characteristics of the degradable part of soil organic matter and its transformation by hot water extraction. Pochvovedenie = Eurasian Soil Science. 1998;(7):890–894. (In Russ.).

24. Orlov D. S. Humus acids of soils and general theory of humification. Moscow: MGU, 1990. 325 p.

25. Zavyalova N. E., Shishkov D. G. Effect of mineral fertilizers on crop quality and yield in long-term stationary experiment in the climatic conditions of the Cis-Urals. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2020;(5):5–17. (In Russ.). DOI: https://doi.org/10.26897/0021-342X-2020-5-5-17

26. Baveye P. C., Wander M. The (Bio) Chemistry of Soil Humus and Humic Substances: Why Is the «New View» Still Considered Novel After More Than 80 Years? Frontiers in Environmental Science. 2019;7(27):1–6. DOI: https://doi.org/10.3389/fenvs.2019.00027

27. Kleber M., Sollins P., Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007;85:9–24. DOI: https://doi.org/10.1007/s10533-007-9103-5

28. Kleber M., Lehmann J. Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems. Journal of Environmental Quality. 2019;48(2):207–216. DOI: https://doi.org/10.2134/jeq2019.01.0036

29. Mohinuzzaman M., Yuan J., Yang X., Senesi N., Li S.-L., Ellam R. M. et al. Insights into solubility of soil humic substances and their fluorescence characterisation in three characteristic soils. Science Total Environment. 2020;720:137395. DOI: https://doi.org/10.1016/j.scitotenv.2020.137395

30. Kholodov V. A., Farkhodov Yu. R., Yaroslavtseva N. V., Aydiev A. Yu., Lazarev V. I., Ilyin B. S. et al. Thermolabile and Thermostable Organic Matter of Chernozems under Different Land Uses. Eurasian Soil Science. 2020;53:1066–1078. DOI: https://doi.org/10.1134/S1064229320080086

31. Olk D. C., Bloom P. R., Perdue E. M., McKnight D. M., Chen Y., Farenhorst A. et al. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of Environmental Quality. 2019;48(2):217–232. DOI: https://doi.org/10.2134/jeq2019.02.0041

32. Gasanova E. S., Myazin N. G., Stekolnikov K. E. Change in elemental composition of humic acids of leached chernozem as affected by fertilizers and ameliorant for topinambour and winter wheat crops. Agrokhimiya. 2018;(11);27–32. (In Russ.). DOI: https://doi.org/10.1134/S0002188118110042

33. Chernikov V. A. Changes in humus compounds of soil in a long-term stationary experiment of the TАСА. Plodorodie. 2002;(4):34–36. (In Russ.).

34. Starykh S. E., Kupriyanov A. N., Belopukhov S. L., Mazirov M. A. Studying the effect of long-term application of fertilizers on organic matter of soddy-podzolyc soil by the method of ir-spectroscopy. Agrokhimicheskiy vestnik = Agrochemical Herald. 2019;(2):17–22. (In Russ.). DOI: https://doi.org/10.24411/0235-2516-2019-109999021

35. Shevtsova L. K., Chernikov V. A., Sychev V. G., Belichenko M. V., Rukhovich O. V., Ivanova O. I. Effect of long-term application of fertilizers on the composition, properties and structural characteristics of humic acids in main soil types. Report 1. Agrokhimiya. 2019;(10):3–15. (In Russ.). DOI: https://doi.org/10.1134/S0002188119100120

36. Lehmann J., Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68. DOI: https://doi.org/10.1038/nature16069

37. Zavyalova N. E., Vasbieva M. T., Fomin D. S. Elemental composition and structure of humic acids in sodpodzolic soil of a long-term stationary experiment and its virgin anal. Agrokhimiya. 2022;(9):15–25. (In Russ.). DOI: https://doi.org/10.31857/S0002188122090149

38. Zavarzin G. A., Kudeyarov V. N. Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia. Vestnik Rossiyskoy akademii nauk = Herald of the Russian Academy of Sciences. 2006;76(1):14–24. (In Russ.).

39. Prikhod'ko V. E., Sizemskaya M. L. Basal respiration and composition of microbial biomass in virgin and agroforest-reclaimed semidesert soils of the Northern Caspian region. Pochvovedenie = Eurasian Soil Science. 2015;(8):974–983. (In Russ.). DOI: https://doi.org/10.7868/S0032180X15080043

40. Zhukova A. D., Khomyakov D. M. Parameters of microbial respiration in soils of the impact zone of a mineral fertilizer factory. Pochvovedenie = Eurasian Soil Science. 2015;(8):984–992. (In Russ.). DOI: https://doi.org/10.7868/S0032180X15080122

41. Polyanskaya L. M., Zvyagintsev D. G. The content and composition of microbial biomass as an index of the ecological status of soil. Pochvovedenie = Eurasian Soil Science. 2005;(6):706–714. (In Russ.).

42. Insam H., Domsch K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology. 1988;(15):177–188. DOI: https://doi.org/10.1007/BF02011711

43. Umarov M. M., Kurakov A. V., Stepanov A. L. Microbiological transformation of nitrogen in soil. Moscow: GEOS, 2007. 136 p.

44. Zavyalova N. E., Vasbieva M. T., Fomin D. S. Microbial biomass, respiratory activity and nitrogen fixation in soddy-podzolic soils of the Pre-Urals area under various agricultural uses. Pochvovedenie = Eurasian Soil Science. 2020;(3):372–378. (In Russ.). DOI: https://doi.org/10.31857/S0032180X20030120

45. Kogut B. M., Semenov V. M., Artemyeva Z. S., Danchenko N. N. Humus depletion and soil carbon sequestration. Agrokhimiya. 2021;(5):3–13. (In Russ.). DOI: https://doi.org/10.31857/S0002188121050070

46. Kudeyarov V. N. Current state of the carbon budget and the capacity of Russian soils for carbon sequestration. Pochvovedenie = Eurasian Soil Science. 2015;(9):1049–1060. (In Russ.). DOI: https://doi.org/10.7868/S0032180X15090087

47. Körschens M. Soil – Humus – Climate. Practically relevant results of 79 long-term field experiments. «Wahrnehmung und Bewertung von Bödenin der Gesellschaft». 2018. 12 p.

48. Kurganova I. N., Lopes de Gerenyu V., Six J., Kuzyakov Y. Carbon cost of collective farming collaps in Russia. Global Change Biology. 2014;20(3):938–947. DOI: https://doi.org/10.1111/gcb.12379

49. Boytsova L. V., Neprimerova S. V., Zinchuk E. G. The effect of various fertilizer systems on sequestration of organic carbon in soddy-gley soil. Problemy agrokhimii i ekologii = Problemy agrohimii i ekologii. 2019;(4):15–20. (In Russ.). DOI: https://doi.org/10.26178/AE.2019.28.73.003

50. Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil. 1997;191:77–87. DOI: https://doi.org/10.1023/A:1004213929699

51. Six J., Conant R. T., Paul E. A., Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil. 2002;241:155–176. DOI: https://doi.org/10.1023/A:1016125726789

52. Zavyalova N. E., Vasbieva M. T., Yamaltdinova V. R., Kazakova I. V. Accumulation of atmospheric carbon by crop rotation crops and the effect of fertilizer systems on the accumulation of organic carbon by arable sod-podzolic soil. Agrokhimiya. 2023;(6):47–56. (In Russ.). DOI: https://doi.org/10.31857/S0002188123060121

53. Zavyalova N. E., Maysak G. P., Kazakova I. V. Ivanova O. V. Photosynthetic and carbon sequestering ability of safflower leucea and accumulation of organic carbon in sod-podzolic soil. Agrokhimiya. 2024;(7):48–56. (In Russ.). DOI: https://doi.org/10.31857/S0002188124070073

54. Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiology Ecology. 2019;95(2):fiz005. DOI: https://doi.org/10.1093/femsec/fiz005

55. Fierer N., Leff J. W., Adams B. J., Nielsen U. N., Bates S. T., Lauber C. L., et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS. 2012;109(52):21390–21395. DOI: https://doi.org/10.1073/pnas.1215210110

56. Yang P., Yuan M., Qu C., Li J., Hua R., Zhao S. et al. Metagenomic insight into the soil microbial functions across land uses. Journal Soils Sediments. 2024;24:3684–3693. DOI: https://doi.org/10.1007/s11368-024-03918-3

57. Mendes L. W., Tsai S. M., Navarrete A. A., De Hollander M., van Veen J. A., Kuramae E. E. Soil-borne microbiome: linking diversity to function. Microbial Ecology. 2015;70:255–265. DOI: https://doi.org/10.1007/s00248-014-0559-2

58. Souza R. C., Hungria M., Cantao M. E., Vasconcelos A. T. R., Nogueira M. A., Vicente V. A. Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and cropmanagement regimes. Applied Soil Ecology. 2015;86:106–112. DOI: https://doi.org/10.1016/j.apsoil.2014.10.010

59. Will C., Thurmer A., Wollherr A., Nacke H., Herold N., Schrumpf M. et al. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Applied and Environmental Microbiology. 2010;76(20):6751–6759. DOI: https://doi.org/10.1128/AEM.01063-10

60. Chen C., Zhang J., Lu M., Qin C., Chen Y., Yang L. et al. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils. 2016;52(4):455–467. DOI: https://doi.org/10.1007/s00374-016-1089-5

61. Dumova V. A., Pershina E. V., Merzlyakova Ya. V., Kruglov Yu. V., Andronov E. E. The main trends in dynamics of soil microbiom during a long-term field experiment as indicated by high throughput sequencing the 16S-rRNA gene libraries. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2013;48(5):85–92. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=20602097

62. Hermans S. M., Buckley H. L., Case B. S., Curran-Cournane F., Taylor M., Lear G. Bacteria as emerging indicators of soil condition. Applied and environmental microbiology. 2017;83(1):e02826-16. DOI: https://doi.org/10.1128/AEM.02826-16


Review

For citations:


Zavyalova N.E., Yamaltdinova V.R., Shishkov D.G., Scryabina S.S., Kazakova I.V. Classical and modern approaches to the study of organic matter of sod-podzolic soils in the Middle Pre-Urals (analytical review). Agricultural Science Euro-North-East. 2025;26(3):470-498. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.3.470-498

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)