The role of somatotropic axis genes in regulating the productivity traits of dairy and beef cattle (review)
https://doi.org/10.30766/2072-9081.2025.26.4.713-724
Abstract
Somatotropin plays a crucial role in regulating growth, metabolism, and development in cattle. This hormone acts through a complex network of protein interactions known as the somatotropic axis, which coordinates metabolic and physiological processes in mammals.
The aim of this review is to systematize current data on the influence of somatotropic axis genes (GH, GHR, IGF-1, etc.) on cattle productivity (both dairy and beef traits) and assess their potential use in livestock breeding programs. Numerous allelic variants of genes associated with the somatotropic axis significantly impact key economic indicators, such as milk yield and composition, carcass characteristics, meat production levels, and reproductive performance. Genetic variants of the GH gene affect parameters including milk yield, fat and protein content, and lactation efficiency. For example, certain genotypes (e.g., GHLL) may increase milk production but reduce fat and protein content, while others (GHVL) can enhance milk fat while decreasing overall yield. Interactions between GH and other genes also play a key role in determining dairy productivity. Recombinant bovine somatotropin (rBGH) is widely used to enhance productivity in dairy cattle, particularly during mid-to-late lactation, by activating mechanisms that improve milk and meat yields. Despite extensive existing research, studies on the genetic variability of the growth hormone gene across different cattle breeds remain relevant and in demand. In this context, the development of personalized rBGH administration protocols-tailored to the genetic profiles of animals-aims to maximize productivity while maintaining animal health and product quality. This necessitates comprehensive research to determine optimal dosages, administration regimens, and their effects on the physiological state of animals with different genotypes throughout their productive cycles.
About the Authors
I. S. KozhevnikovaRussian Federation
Irina S. Kozhevnikova, PhD in Biology, senior researcher,
Nikolsky Prospekt, 20, Archangelsk, 163000
A. O. Stupina
Russian Federation
Alexsandra O. Stupina, junior researcher,
Nikolsky Prospekt, 20, Archangelsk, 163000
I. A. Klassen
Russian Federation
Inga A. Klassen, junior researcher,
Nikolsky Prospekt, 20, Archangelsk, 163000
References
1. Beyshova I. S. Phenotypic effects of somatotropin cascade genes associated with meat productivity in Kazakh Whiteheaded cows. Izvestiya Samarskoy gosudarstvennoy sel'skokhozyaystvennoy akademii = Bulletin Samara State Agricultural Academy. 2018;(1):48–53. (In Russ.). URL: https://elibrary.ru/item.asp?id=35019210
2. Bordonaro S., Tumino S., Marletta D., De Angelis A., Di Paola F., Avondo M., Valenti B. Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals. 2020;10(9):1651. DOI: https://doi.org/10.3390/ani10091651
3. Balogh O., Kovacs K., Kulcsar M., Gáspárdy A., Zsolnai A., Kátai L. et al. AluI polymorphism of the bovine growth hormone (GH) gene, resumption of ovarian cyclicity, milk production and loss of body condition at the onset of lactation in dairy cows. Theriogenology. 2009;71(4):553–559. DOI: https://doi.org/10.1016/j.theriogenology.2008.06.032
4. Shevtsova A. A., Klimov E. A., Kovalchuk S. N. Review of genes variability associated with milk productivity of dairy cattle. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2018;(11-1):194–200. (In Russ.). URL: https://elibrary.ru/item.asp?id=36493474
5. Tkachenko I. V., Gridina S. L. Influence of polymorphic variants of kappa-casein genes and growth hormone on dairy efficiency of ural-type heifers. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2018;(5):87–95. (In Russ.). DOI: https://doi.org/10.26897/0021-342X-2018-5-87-95
6. Sabetova K. D., Chaitskiy A. A., Lemyakin A. D., Shchegolev P. O. Productive traits of black and white cows with different GH and TG complex genotypes in the conditions of pedigree breeding units of the Kostroma region. Vestnik APK Verkhnevolzh'ya = Bulletin of the AIC of the Upper Volga. 2023;(3(63)):49–59. (In Russ.). DOI: https://doi.org/10.35694/YARCX.2023.63.3.006
7. Dolmatova I. Yu., Il'yasov I. G. Association of cattle growth hormone gene polymorphism with milk productivity. Genetika = Russian Journal of Genetics. 2011;47(6):814–820. (In Russ.). DOI: https://doi.org/10.1134/S1022795411060081
8. Shaydullin R. R., Zagidullin L. R., Akhmetov T. M., Khalilova G. Kh. Estimation of dairy productivity of kholmogorsky cows with allel variants of prolactin and somatotropin genes. Agrarnyy nauchnyy zhurnal = The Agrarian Scientific Journal. 2022;(3):75–78. (In Russ.). DOI: https://doi.org/10.28983/asj.y2022i3pp75-78
9. Yaluga V. L., Prozherin V. P., Khabibrakhmanova Ya. A., Kalashni-kova L. A., Bagal I. E. Polymorphism of genes CSN3, LGB, PRL, GH, LEP in holmogorskaya cows. Molochnoe i myasnoe skotovodstvo = Journal of Dairy and Beef Cattle Farming. 2018;(4):5–8. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=35325822
10. Povoznikova M. V., Tulinova O. V., Pogorel'skiy I. A., Serdyuk G. N. The genetic structure of ayrshire cattle at single nucleotide dna markers and their influence on milk production. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2015;(2):22–27. (In Russ) URL: https://www.elibrary.ru/item.asp?id=24389576
11. Mikhaylova M. E., Belaya E. V. Influence of polymorphic variants of somatotropin cascade genes BGH, BGHR and bIGF-1 on milk productivity traits in holstein cattle. Doklady Natsional'noy akademii nauk Belarusi. 2011;55(2):63–69. (In Belarus). URL: https://www.elibrary.ru/item.asp?id=30053537
12. Safina N. Yu., Gilemkhanov I. Yu., Zinnatova F. F., Shakirov Sh. K. Characteristic of milk productivity of cows-heifers with different genotypes of somatotropin (GH). Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta = Vestnik of the Kazan State Agrarian University. 2019;14(3):58–61. (In Russ.). DOI: https://doi.org/10.12737/article_5db9535ed384a3.87060395
13. Perchun A. V., Lazebnaya I. V., Belokurov S. G., Ruzina M. N., Sulimova G. E. Polymorphism of CSN3, bGH and bPRL genes in connection with milk quality traits in kostroma cattle breed. Fundamental'nye issledovaniya = Fundamental research. 2012;(11–2):304–308. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=18318436
14. Mikhalyuk A. N., Tanana L. A., Kuz'mina T. I. Association of the complex of polymorphic variants of the DGAT1, GH, PRL and BLG, genes with dairy productivity indicators of holstein dairy cattle cows of domestic selection. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2023;(1):74–83. (In Russ.). DOI: https://doi.org/10.31043/2410-2733-2023-1-74-83
15. Tanana L. A. Vertinskaya O. V., Kizilevich K. O., Lebedko E. Ya. Slaughter and quality meat indicators of hereford bulls depending on the genotypes of the somatotropin gene. Vestnik Bryanskoy GSKhA = Vestnik of the Bryansk State Agricultural Academy. 2019;(6(76)):40–44. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=41466924
16. Sedykh T. A. Association between gene polymorphism of growth hormone and growth performance of meat bulls. Nauka i studia. 2016;23:10–13.
17. Pal A., Chakravarty A. K. Mutations in growth hormone gene affect stability of protein structure leading to reduced growth, reproduction, and milk production in crossbred cattle–an insight. Domestic Animal Endocrinology. 2020;71:106405. DOI: https://doi.org/10.1016/j.domaniend.2019.106405
18. Nekrasov A. A., Popov A. N., Popov N. A., Fedotova E. G. Impacts of milk protein and hormone gene polymorphisms on energy for growth of holstein black-and-white heifers. Tavricheskiy nauchnyy obozrevatel'. 2016;(5-2(10)):91–95. (In Russ.). URL: https://elibrary.ru/item.asp?id=26249580
19. Uryadnikov M. V., Ulubaev I. Kh. Assessment of somatotropin alleles and genotypes by polymorphism and live weight of black-and-white cows. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta = Bulletin of Altai State Agricultural University. 2011;(3(77)):80–83. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=15615380
20. Yaryshkin A. A., Shatalina O. S., Leshonok O. I. Associations of polymorphic variants of the somatotropine gene with economically valuable indicators of cows. Izvestiya Timiryazevskoy sel'skokhozyaystvennoy akademii = Izvestiya of Timiryazev Agricultural Academy. 2021;(2):60–70. (In Russ.). DOI: https://doi.org/10.26897/0021-342X-2021-2-60-70
21. Ferchichi M. A., Jemmali B., Bel Larbi M., Ben Gara A. Genetic polymorphism of the growth hormone (GH) gene and its effect on the incidence of lameness in dairy cows in Tunisia. Journal of new scinces. 2021;81(2):4696–4701. URL: https://www.jnsciences.org/agri-biotech/116-volume-81/665-genetic-polymorphismof-the-growth-hormone-gh-gene-and-its-effect-on-the-incidence-of-lameness-in-dairy-cows-in-tunisia.html
22. Bangar Y. C., Magotra A., Yadav A. S., Patil C. S. Meta-analysis of MspI derived variants of growth hormone gene associated with milk yield in dairy cattle. Growth Hormone & IGF Research. 2022;63:101459. DOI: https://doi.org/10.1016/j.ghir.2022.101459
23. Sachan S., Gupta I. D., Verma A., Vineeth M. R., Sinha R. Growth hormone-Msp1 loci polymorphism and its association with first lactation traits in Sahiwal cattle. Indian Journal of Animal Sciences. 2020;90(4):655–657. DOI: https://doi.org/10.56093/ijans.v90i4.104226
24. El-Nahas A., Basiony W. M., El-Kassas S., Mahmoud S. Variation in the Genetic Effects of ABCG2, Growth Hormone and Growth Hormone Receptor Gene Polymorphisms on Milk Production Traits in Egyptian Native, Holstein and Hybrid Cattle Populations. Pakistan Veterinary Journal. 2018;38(4):371–376. DOI: https://doi.org/10.29261/pakvetj/2018.089
25. Keogh K., Waters S. M., Kelly A. K., Wylie A. R. G., Kenny D. A. Effect of feed restriction and subsequent realimentation on hormones and genes of the somatotropic axis in cattle. Physiol Genomics. 2015;47(7):264–273. DOI: https://doi.org/10.1152/physiolgenomics.00134.2014
26. Hax L. T., Schneider A., Jacometo C. B., Mattei P., Casarin da Silva T., Farina G., Corrêa M. N. Association between polymorphisms in somatotropic axis genes and fertility of Holstein dairy cows. Theriogenology. 2017;88:67–72. DOI: https://doi.org/10.1016/j.theriogenology.2016.03.044
27. Lucy M. C., Verkerk G. A., Whyte B. E., Macdonald K. A., Burton L., Cursons R. T. et al. Somatotropic axis components and nutrient partitioning in genetically diverse dairy cows managed under different feed allowances in a pasture system. Journal of Dairy Science. 2009;92(2):526–539. DOI: https://doi.org/10.3168/jds.2008-1421
28. Zheng W., Leng X., Vinsky M., Li C., Jiang H. Association of body weight gain with muscle, fat, and liver expression levels of growth hormone receptor, insulin-like growth factor I, and beta-adrenergic receptor mRNAs in steers. Domestic Animal Endocrinology. 2018;64:31–37. DOI: https://doi.org/10.1016/j.domaniend.2018.03.008
29. Mense K., Meyerholz M., Gil Araujo M., Lietzau M., Knaack H., Wrenzycki C. The somatotropic axis during the physiological estrus cycle in dairy heifers – Effect on hepatic expression of GHR and SOCS2. Journal of Dairy Science. 2015;98(4):2409–2418. DOI: https://doi.org/10.3168/jds.2014-8734
30. Yu J., Zhao L., Wang A., Eleswarapu S., Ge X., Chen D., Jiang H. Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology. 2012;153(2):750–758. DOI: https://doi.org/10.1210/en.2011-1591
31. Khan M. Z., Khan A., Xiao J., Ma Yu., Ma J., Gao J., Gao Zh. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals. 2020;10(11):2107. DOI: https://doi.org/10.3390/ani10112107
32. Tian M., Qi Y., Zhang X., Wu Zh., Chen J., Chen F. et al. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Frontiers Cell and Developmental Biology. 2020;8:604896. DOI: https://doi.org/10.3389/fcell.2020.604896
33. Huang Y., Zhao F., Luo C., Zhang X., Si Yu, Sun Zh. et al. SOCS3-Mediated Blockade Reveals Major Contribution of JAK2/STAT5 Signaling Pathway to Lactation and Proliferation of Dairy Cow Mammary Epithelial Cells in Vitro. Molecules. 2013;18(10):12987–13002. DOI: https://doi.org/10.3390/molecules181012987
34. Arun S. J., Thomson P. C., Sheehy P. A., Khatkar M. S., Raadsma H. W., Williamson P. Targeted Analysis Reveals an Important Role of JAK-STAT-SOCS Genes for Milk Production Traits in Australian Dairy Cattle. Frontiers in Genetics. 2015;6:00342. DOI: https://doi.org/10.3389/fgene.2015.00342
35. Winkelman L. A., Lucy M. C., Elsasser T. H., Pate J. L., Reynolds C. K. Short Communication: Suppressor of Cytokine Signaling-2 mRNA Increases After Parturition in the Liver of Dairy Cows. Journal of Dairy Science. 2008;91(3):1080–1086. DOI: https://doi.org/10.3168/jds.2007-0433
36. Kim J. W., Rhoads R. P., Block S., Overton T. R., Frank S. J., Boisclair Y. R. Dairy cows experience selective reduction of the hepatic growth hormone receptor during the periparturient period. Journal of Endocrinology. 2004;181(2):281–290. DOI: https://doi.org/10.1677/joe.0.1810281
37. Durante L. I., Angeli E., Etchevers L., Notaro U. S., Rodríguez F. M., Ortega H. H., Marelli B. E. Evaluation of the expression of growth hormone and its receptor during the resumption of postpartum ovarian follicle development in dairy cows. Reproductive Biology. 2024;24(1):100848. DOI: https://doi.org/10.1016/j.repbio.2023.100848
38. Caixeta L. S., Giesy S. L., Krumm C. S., Perfield J. W., Butterfield A., Boisclair Y. R. Fibroblast growth factor-21 (FGF21) administration to early-lactating dairy cows. II. Pharmacokinetics, whole-animal performance, and lipid metabolism. Journal of Dairy Science. 2019;102(12):11597–11608. DOI: https://doi.org/10.3168/jds.2019-16696
39. Davis A. N., Myers W. A., Chang C., Tate B. N., Rico J. E., Moniruzzaman M. et al. Somatotropin increases plasma ceramide in relation to enhanced milk yield in cows. Domestic Animal Endocrinology. 2021;74:106480. DOI: https://doi.org/10.1016/j.domaniend.2020.106480
40. Zhao Y. Recombinant Bovine Somatotropin. Published under licence by IOP Publishing Ltd. 2020;440:022034. DOI: https://doi.org/10.1088/1755-1315/440/2/022034
41. Jarvis L. S. The Potential Effect Of Two New Biotechnologies On The World Dairy Industry. Boca Raton: CRC Press, 1996. p. 168. DOI: https://doi.org/10.1201/9780429314032
42. St-Pierre N. R., Milliken G. A., Bauman D. E., Collier R. J., Hogan J. S., Shearer J. K. et al. Meta-analysis of the effects of sometribove zinc suspension on the production and health of lactating dairy cows. Journal of the American Veterinary Medical Association. 2014;245(5):550–564. DOI: https://doi.org/10.2460/javma.245.5.550
43. Silva P. R.B., Weber W. J., Crooker B. A., Collier R. J., Thatcher W. W., Chebel R. C. Hepatic mRNA expression for genes related to somatotropic axis, glucose and lipid metabolisms, and inflammatory response of periparturient dairy cows treated with recombinant bovine somatotropin. Journal of Dairy Science. 2017;100(5):3983–3999. DOI: https://doi.org/10.3168/jds.2016-12135
44. Silva P. R. B., Machado K. S., Lobаo Da Silva D. N., Moraes J. G. N., Keisler D. H., Chebel R. C. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows. Journal of Dairy Science. 2015;98(7):4449–4464. DOI: https://doi.org/10.3168/jds.2014-8959
45. Baruselli P. S., Elliff F. M., Silva L. G., Catussi B. L. Ch., Bayeux B. M. Estrategias para aumentar a producao de embrioes em bovinos. Revista Brasileira de Reproducao Animal. 2019;43(2):315–326. URL: https://repositorio.usp.br/item/002956228
46. Campos B. G., Lombardi M. C., Neto H. C. D., Lana A. M. Q., Pereira M. N., Rabelo E. et al. How to use recombinant bovine somatotropin in crossbred Holstein x Gyr (¾ and 7/8) cows? Tropical Animal Health and Production. 2022;1–11. DOI: https://doi.org/10.21203/rs.3.rs-1702713/v1
47. Gasseferth G., Gaievski F. R., Bergstein-Galan T. G., Junior A. G., Bragato A., Valle V. M. et al. Effect of recombinant bovine somatotropin on the reproductive efficiency of beef cows subjected to differently timedartificial insemination protocols. Reproduction in Domestic Animals. 2023;58(12):1654–1661. DOI: https://doi.org/10.1111/rda.14479
48. Oliveira F. A., Almeida I. C., Sena L. M., Penitente-Filho J. M., Torres C. A. A. Recombinant bovine somatotropin in the synchronization of ovulation in crossbred dairy cows (Bos taurus indicus × Bos taurus taurus). Veterinary World. 2020;13(4):746–750. DOI: https://doi.org/10.14202/vetworld.2020.746-750
49. Barreiro R., Lamas A., Miranda J. M., Franco C. M., Cepeda A., Regal P. Impact of Recombinant Bovine Somatotropin on Bovine Milk Composition and Fatty Acidome: A Multidose Longitudinal Study. Foods. 2022;11(21):3477. DOI: https://doi.org/10.3390/foods11213477
Review
For citations:
Kozhevnikova I.S., Stupina A.O., Klassen I.A. The role of somatotropic axis genes in regulating the productivity traits of dairy and beef cattle (review). Agricultural Science Euro-North-East. 2025;26(4):713-724. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.4.713-724