Preview

Agricultural Science Euro-North-East

Advanced search

Aspects of biosecurity of pig feed production (review)

https://doi.org/10.30766/2072-9081.2025.26.4.725-736

Abstract

Food security, particularly pork production, is largely driven by the need to enhance on-farm biosecurity and control the pathways of infectious diseases. Feed and ingredients were not initially considered significant factors in the spread of infections, but recent outbreaks of swine diseases have demonstrated their role in the introduction and spread of pathogens.

The purpose of this review is to consider the potential role of swine feed as a significant link in the pathogen transfer chain and to describe biosecurity measures that contribute to the epizootic welfare of swine populations. Potential methods for preventing pathogen contamination of pigs from feed are described, including prevention of entry into the feed system, mitigation of after-effects by heat treatment, or decontamination with chemicals. Strategies are proposed to reduce the risk of pathogen spread in the feed production environment, including potential batch-to-batch transfer, thereby reducing the risk of infection transmission.

About the Authors

O. A. Burova
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Olga A. Burova, Deputy Head of the group, the Laboratory of Epizootology and Bioinformatics,

Veterinarnaya st., 3, Nizhny Novgorod



E. A. Shirokova
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Ekaterina A. Shirokova, Deputy Head of the group, the Laboratory of Epizootology and Bioinformatics, 

Veterinarnaya st., 3, Nizhny Novgorod



T. V. Ovsyukhno
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Tatiana V. Ovsyukhno, PhD in Veterinary Science, Deputy Head of the group, the Laboratory of Epizootology and Bioinformatics,

Veterinarnaya st., 3, Nizhny Novgorod



T. N. Demidova
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Tatiana N. Demidova, PhD in Veterinary Science, Deputy Head of the group, the Laboratory of Epizootology and Bioinformatics, 

Veterinarnaya st., 3, Nizhny Novgorod



I. V. Yashin
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Ivan V. Yashin, PhD in Biological Science, Director of the Branch,

Veterinarnaya st., 3, Nizhny Novgorod



A. A. Blokhin
Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Andrey A. Blokhin, PhD in Veterinary Science, Head of the Laboratory of Epizootology and Bioinformatics,

Veterinarnaya st., 3, Nizhny Novgorod



References

1. Stewart S. C., Dritz S. S., Woodworth J. C., Paulk C., Jones C. K. A review of strategies to impact swine feed biosecurity. Animal Health Research Reviews. 2020;21(1):61–68. DOI: https://doi.org/10.1017/S146625231900015X

2. Grankina A. S., Golyakevich Z. S. Bacterial contamination of animal and plant feed used in animal husbandry. Biotika. 2015;(6(7)):133–141. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=26591290

3. Österberg J., Vågsholm I., Boqvist S., Sternberg Lewerin S. Feed-borne outbreak of Salmonella Cubana in Swedish pig farms: risk factors and factors affecting the restriction period in infected farms. Acta Veterinaria Scandinavica. 2006;47(1):13–21. DOI: https://doi.org/10.1186/1751-0147-47-13

4. Molla B., Sterman A., Mathews J., Artuso-Ponte V., Abley M., Farmer W. et al. Salmonella enterica in commercial swine feed and subsequent isolation of phenotypically and genotypically related strains from fecal samples. Applied Environmental Microbiology. 2010;76(21):7188–7193. DOI: https://doi.org/10.1128/AEM.01169-10

5. Li X., Bethune L. A., Jia Y., Lovell R. A., Proescholdt T. A., Benz S. A. et al. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility. Foodborne Pathogens and Disease. 2012;9(8):692–698. DOI: https://doi.org/10.1089/fpd.2011.1083

6. Yang X., Wu Q., Zhang J., Huang J., Guo W., Cai S. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China. PLoS One. 2015;10(9):e0137967. DOI: https://doi.org/10.1371/journal.pone.0137967

7. Moreno Switt A. I., Soyer Y., Warnick L. D., Wiedmann M. Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathogens and Disease. 2009;6(4):407–415. DOI: https://doi.org/10.1089/fpd.2008.0213

8. Magossi G., Cernicchiaro N., Dritz S., Houser T., Woodworth J., Jones C., Trinetta V. Evaluation of Salmonella presence in selected United States feed mills. MicrobiologyOpen. 2019;8(5):e00711. DOI: https://doi.org/10.1002/mbo3.711

9. Tulayakul P., Boonsoongnern A., Kasemsuwan S., Ratanavanichrojn N., Netvichian R., Khaodiar S. Heavy metal, Escherichia coli and Salmonella spp. in feeds, reused water, wastewater, and manure from swine farms: a case report. Natural Science. 2012;46:882–893. URL: https://kukr.lib.ku.ac.th/kukr_es/KPS_VET/search_detail/dowload_digital_file/51388/167846

10. Doane C. A., Pangloli P., Richard H. A., Mount J. R., Golden D. A., Draughon F. A. Occurrence of Escherichia coli O157:H7 in diverse farm environments. Journal of Food Protection. 2007;70(1):6–10. DOI: https://doi.org/10.4315/0362-028x-70.1.6

11. Van Schothorst M., Oosterom J. Enterobacteriaceae as indicators of good manufacturing practices in rendering plants. Antonie va Leeuwenhoek. 1984;50:1–6. 12. Jones F. T., Richardson K. E. Salmonella in commercially manufactured feeds. Poultry Science. 2004;83(3):384–391. DOI: https://doi.org/10.1093/ps/83.3.384

12. Mladenović K. G., Grujović M. Ž., Kiš M., Furmeg S., Jaki Tkalec V., Stefanović O. D., Kocić Tanackov S. D. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied Microbiology and Biotechnology. 2021;105(1):8615–8627. DOI: https://doi.org/10.1007/s00253-021-11655-7

13. Dee S., Bauermann R., Niederwerder M. E., Singrey A., Clement T., DeLima M. et al. Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS One. 2018;13(3):e0194509. DOI: https://doi.org/10.1371/journal.pone.0194509

14. Dee S. A., Neill C. R., Singrey A., Clement T., Cochrane R. A., Jones C. K. et al. Modeling the transboundary risk of feed ingredients contaminated with porcine epidemic diarrhea virus. BMC Veterinary Research. 2016;12(1):51. DOI: https://doi.org/10.1186/s12917-016-0674-z

15. Stewart S. C., Dritz S. S., Woodworth J. C., Paulk C., Jones C. K. A review of strategies to impact swine feed biosecurity. Animal Health Research Reviews. 2020;21(1):61–68. DOI: https://doi.org/10.1017/S146625231900015X

16. Loynachan A. T., Harris D. L. Dose determination for acute Salmonella infection in pigs. Applied Environmental Microbiology. 2005;71(5):2753–2755. DOI: https://doi.org/10.1128/AEM.71.5.2753-2755.2005

17. Cornick N. A., Helgerson A. F. Transmission and infectious dose of Escherichia coli O157:H7 in swine. Applied and Environmental Microbiology. 2004;70(9):5331–5335. DOI: https://doi.org/10.1128/AEM.70.9.5331-5335.2004

18. Niederwerder M. C., Stoian A. M. M., Rowland R. R. R., Dritz S. S., Petrovan V., Constance L. A. et al. Infectious Dose of African Swine Fever Virus When Consumed Naturally in Liquid or Feed. Emerging Infectious Diseases. 2019;25(5):891–897. DOI: https://doi.org/10.3201/eid2505.181495

19. Cochrane R. A., Huss A. R., Aldrich G. C., Stark C. R., Jones C. K. Evaluating chemical mitigation of Salmonella Typhimurium ATCC 14028 in animal feed ingredients. Journal of Food Protection. 2016;79(4):672–676. DOI: https://doi.org/10.4315/0362-028X.JFP-15-320

20. Cochrane R. A., Dritz S. S., Woodworth J. C., Stark C. R., Huss A. R., Cano J. P. et al. Feed mill biosecurity plans: a systematic approach to prevent biological pathogens in swine feed. Journal of Swine Health and Production. 2016;24(3):154–164. DOI: https://doi.org/10.54846/jshap/952

21. European Food Safety Authority (EFSA). Microbiological risk assessment in feedingstuffs for foodproducing animals – Scientific Opinion of the Panel on Biological Hazards. EFSA Journal. 2008;6(7):720. DOI: https://doi.org/10.2903/j.efsa.2008.720

22. Gebhardt J. T., Woodworth J. C., Jones C. K., Gauger P. C., Tokach M. D., DeRouchey J. M. et al. Evaluation of the effects of flushing feed manufacturing equipment with chemically- treated rice hulls on porcine epidemic diarrhea virus cross contamination during feed manufacturing. Journal of Animal Science. 2018;96(10):4149–4158. DOI: https://doi.org/10.1093/jas/sky295

23. Yoder A. D., Stark C. R., DeRouchey J. M., Tokach M. D., Paulk C. B., Gebhardt J. et al. Effect of cleaning corn on mycotoxin concentration and nursery pig growth performance. Translational Animal Science. 2021;5(3):txab134. DOI: https://doi.org/10.1093/tas/txab134

24. Muckey M. B., Huss A. R., Yoder A., Jones C. Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment. Poultry Science. 2020;99(8):3841–3845. DOI: https://doi.org/10.1016/j.psj.2020.04.016

25. Schumacher L. L., Cochrane R. A., Huss A. R., Stark C. R., Woodworth J. C., Bai J. F. et al. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility. PLoS One. 2017;12(11):e0187309. DOI: https://doi.org/10.1371/journal.pone.0187309

26. Gebhardt J. T., Woodworth J. C., Tokach M. D., DeRouchey J. M., Goodband R. D., Jones C. K., Dritz S. S. 285 Medium chain fatty acid mitigation activity against porcine epidemic diarrhea virus (PEDV) in nursery pig diets after 40 d of storage. Journal of Animal Science. 2018;96(S2):153. DOI: https://doi.org/10.1093/jas/sky073.282

27. Cliver D. O. Capsid and infectivity in virus detection. Food and Environmental Virology. 2009;1(3-4):123–128. DOI: https://doi.org/10.1007/s12560-009-9020-y

28. Deng M. Y., Cliver D. O. Antiviral effects of bacteria isolated from manure. Microbial Ecology. 1995;30(1):43–54. DOI: https://doi.org/10.1007/BF00184512

29. Tun H. M., Cai Z., Khafipour E. Monitoring Survivability and Infectivity of Porcine Epidemic Diarrhea Virus (PEDv) in the Infected On-Farm Earthen Manure Storages (EMS). Front Microbiol. 2016;7:265. DOI: https://doi.org/10.3389/fmicb.2016.00265

30. Cochrane R. A., Schumacher L. L., Dritz S. S., Woodworth J. C., Huss A. R., Stark C. R. et al. Effect of pelleting on survival of Porcine Epidemic Diarrhea Virus (PEDV)-contaminated feed. Journal of Animal Science. 2017;95(3):1170–1178. DOI: https://doi.org/10.2527/jas.2016.0961

31. Eklund T. Inhibition of microbial growth at different pH levels by bezoic and propionic acids and esters of p-hydroxybenzoic acid. International Journal of Food Microbiology. 1985;2(3):159–167. DOI: https://doi.org/10.1016/0168-1605(85)90035-2

32. Orhan I. E., Özçelik B., Kartal M., Kan Y. Antimicrobial and antiviral effect of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turkish Journal of Biology. 2012;36(3):239–246. DOI: https://doi.org/10.3906/biy-0912-30

33. Smith D. J., Oliver C. E., Taylor J. B., Anderson R. C. Efficacy, metabolism, and toxic responses to chlorate salts in food and laboratory animals. Journal of Animal Science. 2012;90(11):4098–4117. DOI: https://doi.org/10.2527/jas.2011-4997

34. Cochrane R. A., Amachawadi R. G., Remfry S., Lerner A. B., Gebhardt J. T., Nagaraha T. G. et al. 105 Young Scholar Presentation: A review of medium chain fatty acids and their recent role in feed safety. Journal of Animal Science. 2018;96(S2):55. DOI: https://doi.org/10.1093/jas/sky073.103

35. Dee S., Neil C., Clement T., Christopher-Hennings J., Nelson E. An evaluation of a liquid antimicrobial (Sal CURB®) for reducing the risk of porcine epidemic diarrhea virus infection of naïve pigs during consumption of contaminated feed. BMC Veterinary Research. 2014;10:220. DOI: https://doi.org/10.1186/s12917-014-0220-9

36. Dee S., Neill C., Clement T., Singrey A., Christopher-Hennings J., Nelson E. An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porcine Health Management. 2015;1:9. DOI: https://doi.org/10.1186/s40813-015-0003-0

37. Williams H. E., Cochrane R. A., Woodworth J. C., DeRouchey J. M., Dritz S. S., Tokach M. D. et al. Effects of dietary supplementation of formaldehyde and crystalline amino acids on gut microbial composition of nursery pigs. Nature Scientific Reports. 2018;8(1):8164. DOI: https://doi.org/10.1038/s41598-018-26540-z

38. Thomson K. A., Gebhardt J. T., Lerner A. B., Woodworth J. C., Tokach M. D., DeRouchey J. M. et al. 471 Evaluation of medium chain fatty acids as a dietary additive in nursery pig diets. Journal of Animal Science. 2018;96(S2):252–253. DOI: https://doi.org/10.1093/jas/sky073.468

39. Huss A. R., Schumacher L. L., Cochrane R. A., Poulsen E., Bai J., Woodworth J. C. et al. Elimination of porcine epidemic diarrhea virus in an animal feed manufacturing facility. PLoS One. 2017;12(1):e0169612. DOI: https://doi.org/10.1371/journal.pone.0169612

40. Zhao T., Podtburg T. C., Zhao P., Chen D., Baker D. A., Cords B., Doyle M. P. Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant. Journal of Foot Protection. 2013;76(4):601–607. DOI: https://doi.org/10.4315/0362-028X.JFP-12-323

41. Amezquita A., Brashears M. M. Competitive inhibition of Listeria mono- cytogenes in ready-to-eat meat products by lactic acid bacteria. Journal of Food Protection. 2002;65(2):316–325. DOI: https://doi.org/10.4315/0362-028x-65.2.316

42. Muthukumarasamy P., Holley R. A. Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology. 2007;24(1):82–88. DOI: https://doi.org/10.1016/j.fm.2006.03.004

43. Ruiz-Moyano S., Martin A., Benito M. J., Casquete R., Serradilla M. J., de Guia Cordoba M. Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Science. 2009;83(3):460–467. DOI: https://doi.org/10.1016/j.meatsci.2009.06.027

44. Schumacher L. L., Woodworth J. C., Jones C. K., Chen Q., Zhang J., Gauger P. C. et al. Evaluation of the minimum infectious dose of porcine epidemic diarrhea virus in a feed matrix. American Journal of Veterinary Research. 2016;77(10):1108–1113. DOI: https://doi.org/10.2460/ajvr.77.10.1108

45. Sardella C. A., Petrovan V., Davis S. K., Stewart S. S., Niederwerder M. C., Woodworth J. C. et al. Validation of environmental swabbing to detect Senecavirus A in feed. Journal of Animal Science. 2019;97(S2):245–246. DOI: https://doi.org/10.1093/jas/skz122.433

46. Schumacher L. L, Cochrane R. A., Huss A. R., Gebhardt J. T., Woodworth J. C., Stark C. R. et al. Feed batch sequencing to decrease the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing. Journal of Animal Science. 2018;96(11):4562–4570. DOI: https://doi.org/10.1093/jas/sky320


Review

For citations:


Burova O.A., Shirokova E.A., Ovsyukhno T.V., Demidova T.N., Yashin I.V., Blokhin A.A. Aspects of biosecurity of pig feed production (review). Agricultural Science Euro-North-East. 2025;26(4):725-736. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.4.725-736

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)