Перспективы использования кустарников Европейской части России в животноводстве (обзор)
https://doi.org/10.30766/2072-9081.2025.26.4.737-748
Аннотация
В обзоре представлены сведения о кустарниках родов Crataegus L., Ephedra L., Frangula L., Prunus L., Rhamnus L., Rubus L. различных семейств (Rosaceae, Ephedraceae, Rhamnaceae), традиционно произрастающих в Европейской части России. Данные растения широко известны, как обладающие потенциалом в качестве перспективных источников биологически активных соединений классов терпеноидов, флавоноидов, алкалоидов и антраценпроизводных. Анализ 80 источников научной литературы направлен на поиск новых подходов в профилактике и лечении заболеваний сельскохозяйственных животных, основанных на безопасных и эффективных принципах, так как применение синтезированных лекарственных препаратов сопряжено с развитием нежелательных эффектов, а в случае с антибиотиками – устойчивости бактерий. В этой связи применение природных источников биологически активных веществ имеет преимущества по сравнению с синтезированными препаратами, в таких аспектах, как минимизация побочных эффектов, эффективность и экономическая выгода. В настоящем обзоре проведен анализ значимости растений указанных родов и семейств для животноводства. Представлена информация о содержании биологически активных веществ в этих растениях и их фармакологических свойствах, практическом применении и потенциале для использования в сельском хозяйстве как альтернативы фармацевтическим препаратам, обсуждаются возможности будущих исследований в этом аспекте.
Ключевые слова
Об авторах
К. С. ИнчаговаРоссия
Инчагова Ксения Сергеевна, кандидат биол. наук, научный сотрудник лаборатории селекционно-генетических исследований в животноводстве,
ул. 9 Января д. 29, г. Оренбург, Оренбургская область, 460000
И. А. Вершинина
Россия
Вершинина Ирина Александровна, кандидат биол. наук, научный сотрудник отдела технологии зерновых и кормовых культур,
ул. 9 Января д. 29, г. Оренбург, Оренбургская область, 460000
Список литературы
1. Elkholly D. A., Brodbelt D. C., Church D. B., Pelligand L., Mwacalimba K., Wright A. K., O'Neill D. G. Side effects to systemic glucocorticoid therapy in dogs under primary veterinary care in the UK. Frontiers in Veterinary Science. 2020;7:515. DOI: https://doi.org/10.3389/fvets.2020.00515
2. Noor F., Tahir ul Qamar M., Ashfaq U. A., Albutti A., Alwashmi A. S., Aljasir M. A. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals. 2022;15(5):572. DOI: https://doi.org/10.3390/ph15050572
3. Abdallah E. M., Alhatlani B. Y., de Paula Menezes R., Martins C. H. G. Back to Nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants. 2023;12(17):3077. DOI: https://doi.org/10.3390/plants12173077
4. Cui M., Cheng L., Zhou Z., Zhu Z., Liu Y., Li C. et al. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. Journal of ethnopharmacology. 2024;319(2):117229. DOI: https://doi.org/10.1016/j.jep.2023.117229
5. Bussmann R. W., Paniagua-Zambrana N. Y., Kikvidze Z., Batsatsashvili K., Khutsishvili M., Maisaia I. et al. Frangula alnus Miller, Rhamnus cathartica L., Rhamnus imeretina Booth, Petz., G. Kirchn. Rhamnaceae. In: Bussmann, R.W. (eds) Ethnobotany of the Caucasus. Ethnobotany of Mountain Regions. Springer, Cham, 2025. pp. 1–16. DOI: https://doi.org/10.1007/978-3-319-50009-6_319-1
6. Lee T. D., Eisenhaure S. E., Gaudreau I. P. Pre-logging treatment of invasive glossy buckthorn (Frangula alnus Mill.) promotes regeneration of eastern white pine (Pinus strobus L.). Forests. 2017;8(1):16. DOI: https://doi.org/10.3390/f8010016
7. Đukanović S., Cvetković S., Lončarević B., Lješević M., Nikolić B., Simin N. et al. Antistaphylococcal and biofilm inhibitory activities of Frangula alnus bark ethyl-acetate extract. Industrial Crops and Products. 2020;158:113013. DOI: https://doi.org/10.1016/j.indcrop.2020.113013
8. Nejabatdoust A., Daemi H. B., Salehzadeh A. Comparing of Effects of Hydro-alcoholic, Ethanolic, and Methanolic Extracts of the Frangula alnus: Chemical Composition, Antimicrobial, and Synergism. Journal of Genetic Resources. 2020;6(1):20–33. DOI: https://doi.org/10.22080/jgr.2020.2538
9. Kremer D., Kosalec I., Locatelli M., Epifano F., Genovese S., Carlucci G., Končić M. Z. Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. Bark. Food Chemistry. 2012;131(4):1174–1180. DOI: https://doi.org/10.1016/j.foodchem.2011.09.094
10. Brkanac S. R., Gerić M., Gajski G., Vujčić V., Garaj-Vrhovac V., Kremer D., Domijan A. M. Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin. Regulatory Toxicology and Pharmacology. 2015;73(3):923–929. DOI: https://doi.org/10.1016/j.yrtph.2015.09.025
11. García-González R., Giráldez F. J., Mantecón A. R., González J. S., López S. Effects of rhubarb (Rheum spp.) and frangula (Frangula alnus) on intake, digestibility and ruminal fermentation of different diets and feedstuffs by sheep. Animal Feed Science and Technology. 2012;176(1-4):131–139. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.016
12. García-González R., López S., Fernández M., González J. S. Dose–response effects of Rheum officinale root and Frangula alnus bark on ruminal methane production in vitro. Animal Feed Science and Technology. 2008;145(1-4):319–334. DOI: https://doi.org/10.1016/j.anifeedsci.2007.05.040
13. Nota G., Svensk M., Barberis D., Frund D., Pagani R., Pittarello M. et al. Foraging behavior of Highland cattle in silvopastoral systems in the Alps. Agroforestry System. 2024;98:491–505. DOI: https://doi.org/10.1007/s10457-023-00926-z
14. Labokas J., Karpaviciene B. Development of a Methodology for Maintenance of Medicinal Plant Genetic Reserve Sites: A Case Study for Lithuania. Plants. 2021;10(4):658. DOI: https://doi.org/10.3390/plants10040658
15. Klich D. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest. Acta Oecologica. 2018;87:8–12. DOI: https://doi.org/10.1016/j.actao.2018.01.002
16. Kurylo J. S., Knight K. S., Stewart J. R., Endress A. G. Rhamnus cathartica: Native and naturalized distribution and habitat preferences. The Journal of the Torrey Botanical Society. 2007;134(3):420–430. DOI: https://doi.org/10.3159/1095-5674(2007)134[420:RCNAND]2.0.CO;2
17. Hamed M. M., Refahy L. A., Abdel-Aziz M. S. Evaluation of Antimicrobial Activity of Some Compounds Isolated from Rhamnus cathartica L. Oriental Journal of Chemistry. 2015;31(2):1133–1140. DOI: https://doi.org/10.13005/ojc/310266
18. Ibrahim B., Reis A., Arin U. E., Muhammed M. T., Onem E. An Evaluation of the Anti-QS Activity and Virulence Factors Production Potential of Rhamnus cathartica L. against Some Gram-Positive and Gram-Negative Bacteria. Medicine and Pharmacology. 2023 (Preprints). DOI: https://doi.org/10.20944/preprints202312.1822.v1
19. Hedayati P., Chabra A., Parandin F., Rahimi Esboei B. Anti-leishmaniasis activity of Rhamnus cathatica on amastigote stages of Leishmania major. International Journal of Molecular and Clinical Microbiology. 2023;13(1):1802–1809. DOI: https://doi.org/10.22034/IJMCM.2023.703699
20. Bayat F., Haghi A. M., Nateghpour M., Rahimi-Esboei B., Foroushani A. R. et al. Cytotoxiity and AntiPlasmodium berghei Activity of Emodin Loaded Nanoemulsion. Iranian Journal of Parasitology. 2022;17(3):339–348. DOI: https://doi.org/10.18502/ijpa.v17i3.10624
21. Lichtensteiger C. A., Johnston N. A., Beasley V. R. Rhamnus cathartica (Buckthorn) Hepatocellular Toxicity in Mice. Toxicologic pathology. 1997;25(5):449–452. DOI: https://doi.org/10.1177/019262339702500503
22. Brenes R., Nguyen L. M. N., Miller D. L., Rohde M. L. Hepatocellular toxicity of the metabolite emodin produced by the common buckthorn (Rhamnus cathartica) in green frog (Lithobates clamitans) tadpoles. Journal of Wildlife Diseases. 2022;58(2):341–347. DOI: https://doi.org/10.7589/JWD-D-21-00040
23. Rhamnus cathartica. Reactions Weekly. 2011;1347:34. DOI: https://doi.org/10.2165/00128415-201113470-00113
24. Popescu I., Caudullo G. Prunus spinosa in Europe: distribution, habitat, usage and threats. 2016. In book: European Atlas of Forest Tree Species. Editors: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Durrant T. H., Mauri A. Publisher: Publication Office of the European Union, Luxembourg, 2016. pp. e018f4e+. URL: https://www.researchgate.net/publication/299471144_Prunus_spinosa_in_Europe_distribution_habitat_usage_and_threats
25. Bei M. F., Apahidean A. I., Budau R., Rosan C. A., Popovici R., Memete A. R. et al. An Overview of the Phytochemical Composition of Different Organs of Prunus spinosa L., Their Health Benefits and Application in Food Industry. Horticulturae. 2024;10(1):29. DOI: https://doi.org/10.3390/horticulturae10010029
26. Marcetic M., Samardzic S., Ilic T., Bozic D. D., Vidovic B. Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus spinosa L. Fruits. Foods. 2022;11(20):3289. DOI: https://doi.org/10.3390/foods11203289
27. Marchelak A., Owczarek A., Matczak M., Pawlak A., Kolodziejczyk-Czepas J., Nowak P., Olszewska M. A. Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro. Frontiers in Pharmacology. 2017;8:680. DOI: https://doi.org/10.3389/fphar.2017.00680
28. Kumarasamy Y., Cox P. J., Jaspars M., Nahar L., Sarker S. D. Comparative studies on biological activities of Prunus padus and P. spinose. Fitoterapia. 2004;75(1):77–80. DOI: https://doi.org/10.1016/j.fitote.2003.08.011
29. Rodriguez R., Lasheras B., Cenarruzabeitia E. Pharmacological Activity of Prunus spinosa on Isolated Tissue Preparations. Planta Medica. 1986;52(4):256–259. DOI: https://doi.org/10.1055/s-2007-969145
30. Sabatini L., Fraternale D., Di Giacomo B., Mari M., Albertini M. C., Gordillo B. et al. Chemical composition, antioxidant, antimicrobial and anti-inflammatory activity of Prunus spinosa L. fruit ethanol extract. Journal of Functional Foods. 2020;67:103885. DOI: https://doi.org/10.1016/j.jff.2020.103885
31. Velickovic I., Zizak Z., Rajcevic N., Ivanov M., Sokovic M., Marin P. D., Grujic S. Prunus spinosa L. leaf extracts: polyphenol profile and bioactivities. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2021;49(1):12137. DOI: https://doi.org/10.15835/NBHA49112137
32. Velickovic I., Zizak Z., Rajcevic N., Ivanov M., Sokovic M., Marin P. D., Grujic S. Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Archives of Biological Sciences. 2020;72(1):105–115. DOI: https://doi.org/10.2298/ABS191217004V
33. Facciolati V., Zarek M., Błońska E., Lasota J., Orman O., Ciach M. To be browsed or not to be browsed: differences in nutritional characteristics of blackthorn Prunus spinosa subject to the long-term pressure of herbivores. bioRxiv. 2024. (Preprint). DOI: https://doi.org/10.1101/2024.04.04.588043
34. Smit C., Bakker E. S., Apol M. E. F., Olff H. Effects of cattle and rabbit grazing on clonal expansion of spiny shrubs in wood-pastures. Basic and Applied Ecology. 2010;11(8):685–692. DOI: https://doi.org/10.1016/j.baae.2010.08.010
35. Ashton N. M., Doles J. Plant Thorn Synovitis Caused by Prunus Spinosa (Blackthorn) Penetration in 35 Horses. Equine Veterinary Journal.. 2015;S47:17. DOI: https://doi.org/10.1111/evj.12486_38
36. Bullitta S., Re G. A., Manunta M. D. I., Piluzza G. Traditional knowledge about plant, animal, and mineral-based remedies to treat cattle, pigs, horses, and other domestic animals in the Mediterranean island of Sardinia. Journal of Ethnobiology and Ethnomedicine. 2018;14:50. DOI: https://doi.org/10.1186/s13002-018-0250-7
37. Sagaradze V. A., Babaeva E. Y., Kalenikova E. I., Trusov N. A., Peshchanskaya E. V. Quantitative Anatomical Characteristics of the Leaf Blades of the Several Species of Crataegus L. Drug development & registration. 2021;10(4):138–146. (In Russ.). DOI: https://doi.org/10.33380/2305-2066-2021-10-4-138-146 EDN: YXIKQJ
38. Волкова Н. А., Куркин В. А., Правдивцева О. Е., Куркина А. В., Варина Н. Р., Шарова О. В. Исследования по разработке методики количественного анализа побегов боярышника кроваво-красного. Фармация. 2021;70(5):22–26. DOI: https://doi.org/10.29296/25419218-2021-05-03 EDN: JPNEEP
39. Kurkin V. A., Morozova T. V., Pravdivtseva O. E., Kurkina A. V., Daeva E. D., Kadentsev V. I. Constituents from Leaves of Crataegus sanguinea. Chemistry of Natural Compounds. 2019;55:21–24. DOI: https://doi.org/10.1007/s10600-019-02606-w
40. Куркин В. А., Волкова Н. А., Правдивцева О. Е., Куркина А. В., Трифонова П. В., Дубищев А. В., Агапов А. И., Егорова С. Н. Определение содержания флавоноидов в цветках, листьях и побегах боярышника. Вопросы биологической, медицинской и фармацевтической химии. 2022;25(4):3–9. DOI: https://doi.org/10.29296/25877313-2022-04-01 EDN: JZFAXN
41. Medetbekova A., Kolumbayeva S., Dauletbayeva S. Study of antimutagenic activity of medicinal plant infusions Crataegus sanguinea Pall. family Rosaceae in plant test systems. BIO Web Conferences: International Scientific Forum «Modern Trends in Sustainable Development of Biological Sciences» (IFBioScFU 2024). 2024;100:03011. DOI: https://doi.org/10.1051/bioconf/202410003011
42. Sun J., Gao G., Gao Y. L., Xiong J., Li X., Guo J., Zhang Y. Experimental research on the in vitro antitumor effects of Crataegus sanguinea. Cell Biochemistry and Biophysics. 2013;67:207–213. DOI: https://doi.org/10.1007/s12013-013-9535-6
43. Куркин В. А., Морозова Т. В., Шайхутдинов И. Х., Лямин А. В., Правдивцева О. Е., Первушкин С. В., Кретова А. А. Сравнительное фитохимическое и микробиологическое исследование жидких экстрактов из плодов боярышника кроваво-красного и боярышника полумягкого. Вопросы биологической, медицинской и фармацевтической химии. 2019;22(4):3–6. DOI: https://doi.org/10.29296/25877313-2019-04-01 EDN: AMWPOR
44. Fedorova D. G., Karpova G. V., Ukenov B. S. The Accumulation of Heavy Metals in the Leaves of Crataegus Sanguinea Pall. (Redhaw Hawthorn) in the Urban Environment (On the Example of Orenburg). IOP Conference Series: Earth and Environmental Science. 2021;670:012030. DOI: https://doi.org/10.1088/1755-1315/670/1/012030
45. Blamey M., Grey-Wilson C. Flora of Britain and Northern Europe. Hodder & Stoughton, 1989. 544 p.
46. La Torre C., Loizzo M. R., Frattaruolo L., Plastina P., Grisolia A., Armentano B. et al. Chemical Profile and Bioactivity of Rubus idaeus L. Fruits Grown in Conventional and Aeroponic Systems. Plants. 2024;13(8):1115. DOI: https://doi.org/10.3390/plants13081115
47. Gao X., Lin F., Li M., Mei Y., Li Y., Bai Y. et al. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Scientific Reports. 2024;14:24438. DOI: https://doi.org/10.1038/s41598-024-75559-y
48. Kotuła M., Kapusta-Duch J., Smoleń S., Doskočil I. Phytochemical Composition of the Fruits and Leaves of Raspberries (Rubus idaeus L.) – Conventional vs. Organic and Those Wild Grown. Applied Sciences. 2022;12(22):11783. DOI: https://doi.org/10.3390/app122211783
49. Krauze-Baranowska M., Głód D., Kula M., Majdan M., Hałasa R., Matkowski A. et al. Chemical composition and biological activity of Rubus idaeus shoots – a traditional herbal remedy of Eastern Europe. BMC Complementary Medicine and Therapies. 2014;14:480. DOI: https://doi.org/10.1186/1472-6882-14-480
50. Ispiryan A., Atkociuniene V., Makstutiene N., Sarkinas A., Salaseviciene A., Urbonaviciene D. et al. Correlation between Antimicrobial Activity Values and Total Phenolic Content/Antioxidant Activity in Rubus idaeus L. Plants. 2024;13(4):504. DOI: https://doi.org/10.3390/plants13040504
51. Krauze-Baranowska M., Majdan M., Hałasa R., Głod D., Kula M., Fecka I., Orzeł A. The antimicrobial activity of fruits from some cultivar varieties of Rubus idaeus and Rubus occidentalis. Food & Function. 2014;5:2536–2541. DOI: https://doi.org/10.1039/C4FO00129J
52. Četojević-Simin D. D., Velićanski A. S., Cvetković D. D., Markov S. L., Ćetković G. S., Šaponjac V. T. T. et al. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts. Food chemistry. 2015;166:407–413. DOI: https://doi.org/10.1016/j.foodchem.2014.06.063
53. Markov N., Georgiev D., Georgieva M., Bozhanska T., Hristova D., Hristov M. Waste from the summer pruning of berry bushes suitable for feeding beef cattle. Macedonian Journal of Animal Science. 2022;12(1-2):23–28. DOI: https://doi.org/10.54865/mjas22121-2021m
54. Lans C., Turner N., Khan T., Brauer G., Boepple W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. Journal of Ethnobiology and Ethnomedicine. 2007;3:11. DOI: https://doi.org/10.1186/1746-4269-3-11
55. Nota G., Svensk M., Barberis D., Frund D., Pagani R., Pittarello M. et al. Foraging behavior of Highland cattle in silvopastoral systems in the Alps. Agroforestry Systems. 2024;98:491–505. DOI: https://doi.org/10.1007/s10457-023-00926-z
56. Агабабян Ш. М. Кормовые растения сенокосов и пастбищ СССР: в 3 т. Под ред. И. В. Ларина. М.-Л.: Сельхозгиз, 1951. Т. 2: Двудольные (Хлорантовые – Бобовые). С. 486–487.
57. Grochowski D. M., Strawa J. W., Granica S., Tomczyk M. Secondary metabolites of Rubus caesius (Rosaceae). Biochemical Systematics and Ecology. 2020;92:104111. DOI: https://doi.org/10.1016/j.bse.2020.104111
58. Dudzinska D., Bednarska K., Boncler M., Luzak B., Watala C. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils. Platelets. 2016;27(5):433–439. DOI: https://doi.org/10.3109/09537104.2015.1131254
59. Dudzinska D., Luzak B., Boncler M., Rywaniak J., Sosnowska D., Podsedek A., Watala C. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus. Cellular and Molecular Biology Letters. 2014;19(3):361–380. DOI: https://doi.org/10.2478/s11658-014-0202-8
60. Hering A., Stefanowicz-Hajduk J., Hałasa R., Olech M., Nowak R., Kosiński P., Ochocka J. R. Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules. 2022;27(19):6181. DOI: https://doi.org/10.3390/molecules27196181
61. Schadler V., Dergatschewa S. Rubus caesius L. leaves: Pharmacognostic analysis and the study of hypoglycemic activity. National Journal of Physiology, Pharmacy and Pharmacology. 2017;7(5):501–508. DOI: https://doi.org/10.5455/njppp.2017.7.1234224012017
62. Topcu G. D., Koyun N. K., Korkmaz A. The Relationship Standardized Precipitation Evapotranspiration Index (SPEI) and Forage Value of Rubus Species Collected from Türkiye’s Flora. Sustainability. 2024;16(21):9278. DOI: https://doi.org/10.3390/su16219278
63. Cosyns E., Degezelle T., Demeulenaere E., Hoffmann M. Feeding ecology of Konik horses and donkeys in Belgian coastal dunes and its implications for nature management. Belgian journal of zoology. 2001;131(S2):111–118. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=812e5da5094aeb40935a06ac170928f7ff7fbc2d
64. Shomurodov H., Khayitov R., Abduraimov O., Maxmudov A., Abduraimov A. Poisonous and harmful plants of pastures in the Kyzylkum desert (Uzbekistan). E3S Web of Conferences. 2024;539:01008. DOI: https://doi.org/10.1051/e3sconf/202453901008
65. Chroho M., Bailly C., Bouissane L. Ethnobotanical Uses and Pharmacological Activities of Moroccan Ephedra Species. Planta medica. 2024;90(05):336–352. DOI: https://doi.org/10.1055/a-2269-2113
66. Dousari A. S., Satarzadeh N., Amirheidari B., Forootanfar H. Medicinal and Therapeutic Properties of Ephedra. Revista Brasileira de Farmacognosia. 2022;32:883–899. DOI: https://doi.org/10.1007/s43450-022-00304-3
67. Ibragic S., Sofic E. Chemical composition of various Ephedra species. Biomolecules Biomed. 2015;15(3):21–27. DOI: https://doi.org/10.17305/bjbms.2015.539
68. Nurushev M., Nurusheva A., Baibagyssov A. The Role of Climate Change in the Dynamics of the Kazakhstan Population of Saiga (Saiga Tatarica L.). Global Ecology and Biogeography. 2022;5(1):146–153. DOI: https://doi.org/10.17352/gje.000034
69. Sen Z., Qing C., Keremu A., Shanhui L., Yongjun Z., Defu H. Food patch particularity and forging strategy of reintroduced Przewalski’s horse in North Xinjiang, China. Turkish Journal of Zoology. 2017;41:924–930. DOI: https://doi.org/10.3906/zoo-1509-9
70. Gheibipour M., Ghiasi S. E., Bashtani M., Torbati M. B. M., Motamedi H. The potential of tannin degrading bacteria isolated from rumen of Iranian Urial ram as silage additives. Bioresource Technology Reports. 2022;18:101024. DOI: https://doi.org/10.1016/j.biteb.2022.101024
71. Тимофеев Н. П. Фитобиотики в мировой практике: виды растений и действующие вещества, эффективность и ограничения, перспективы (обзор). Аграрная наука Евро-Северо-Востока. 2021;22(6):804–825. DOI: https://doi.org/10.30766/2072-9081.2021.22.6.804-825 EDN: SZRHZL
72. Twaij B. M., Hasan M. N. Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. International Journal of Plant Biology. 2022;13(1):4–14. DOI: https://doi.org/10.3390/ijpb13010003
73. Aljohani A. Botanical Compounds: A Promising Approach to Control Mycobacterium Species of Veterinary and Zoonotic Importance. Pakistan veterinary journal. 2023;43(4):633–642. DOI: http://dx.doi.org/10.29261/pakvetj/2023.107
74. Auezov G. A. M., Pernebekova R., Auezov N. S. M., Uzakovich Z. K., Rakhmonov T., Azamatovna T. K. et al. Comparative analysis of antimicrobial properties of medicinal plants used in veterinary medicine. Caspian journal of environmental sciences. 2024;22:1043–1053. URL: https://cjes.guilan.ac.ir/article_8071_4fb5ab1d48fab6d8f50679265de08179.pdf
75. Faehnrich B., Franz C., Nemaz P., Kaul H. P. Medicinal plants and their secondary metabolites – State of the art and trends in breeding, analytics and use in feed supplementation – With special focus on German chamomile. Journal of Applied Botany and Food Quality. 2021;94:6174. DOI: https://doi.org/10.5073/JABFQ.2021.094.008
76. Samadov B. S., Jalilova F. S., Jalilov F. S. Analysis of the components of the collection of medicinal plant raw materials of Momordica Charantia L. Scientific progress. 2022;3:49–57. URL: https://cyberleninka.ru/article/n/analysisof-the-components-of-the-collection-of-medicinal-plant-raw-materials-of-momordica-charantia-l
77. Csepregi R., Temesfői V., Das S., Alberti Á., Tóth C. A., Herczeg R. et al. Cytotoxic, antimicrobial, antioxidant properties and effects on cell migration of phenolic compounds of selected transylvanian medicinal plants. Antioxidants. 2020;9(2):166. DOI: https://doi.org/10.3390/antiox9020166
78. Okaiyeto K., Oguntibeju O. O. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. International journal of environmental research and public health. 2021;18(11):5988. DOI: https://doi.org/10.3390/ijerph18115988
79. Nwozo O. S., Effiong E. M., Aja P. M., Awuchi C. G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. International Journal of Food Properties. 2023;26(1):359–388. DOI: https://doi.org/10.1080/10942912.2022.2157425
80. Faehnrich B., Lukas B., Humer E., Zebeli Q. Phytogenic pigments in animal nutrition: potentials and risks. Journal of the Science of Food and Agriculture. 2016;96(5):1420–1430. DOI: https://doi.org/10.1002/jsfa.7478
Рецензия
Для цитирования:
Инчагова К.С., Вершинина И.А. Перспективы использования кустарников Европейской части России в животноводстве (обзор). Аграрная наука Евро-Северо-Востока. 2025;26(4):737-748. https://doi.org/10.30766/2072-9081.2025.26.4.737-748
For citation:
Inchagova K.S., Vershinina I.A. Prospects for the use of shrubs of the European part of Russia in animal husbandry (review). Agricultural Science Euro-North-East. 2025;26(4):737-748. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.4.737-748