Preview

Agricultural Science Euro-North-East

Advanced search

Use of marker-assisted selection in creation of models of cereal crops varieties resisted to abiotic stresses

https://doi.org/10.30766/2072-9081.2018.64.3.04-12

Abstract

Under the conditions of constantly changing industry demands and worsening of ecological situation, models of agricultural crops varieties must be regularly modernized. While creating a varietal model it is necessary to do the genotyping of parental plants (at the first stage of model design) and most suitable plants from hybrid segregating populations (at the third stage). MAS-breeding allows to reduce significantly time and labor cost of this work as compared to the traditional technology of genotype evaluation by phenotypic display of a trait. Different markers of trait existing today desired to be introduced into newly created varieties are considered in the review: morphological markers, physiological-biochemical (allozime) markers and different types of molecular markers (microsatellites and quantitative trait loci). The characteristics is given to the most widespread methods of marker-assisted selection; reasons of MAS-breeding popularity within private and public breeding companies are considered; examples of successful use of molecular markers in programs on increasing the resistance of cereal crops to drought, heightened acidity and content of aluminum ions are presented. Reasons of relatively low success in creation of varieties resistant to abiotic stresses as compared to breeding for disease resistance are observed separately. Special attention is paid to genetic complexity in control of quantitative traits; to the influence of environmental factors on display of link between quantitative trait loci and genes marked by them. Conclusion is made on high perspective in use of molecular markers in investigation projects on development and creation of varietal models of agricultural crops which combine high productivity and product quality with resistance to stress abiotic environmental factors.

About the Author

E. M. Lisitsyn
Federal Agricultural Research Center of the North-East named N.V. Rudnitsky
Russian Federation


References

1. Кумаков В.А. Физиологическое обоснование моделей сортов пшеницы. М.: Агропромиздат, 1985. 270 с.

2. Гребенникова И.Г., Алейников А.Ф., Степочкин П.И. Построение модели сорта яровой тритикале на основе современных информационных технологий // Вычислительные технологии. 2016. Т. 21. С. 53-64.

3. Новоселов С.Н. Философия идеотипа сельскохозяйственных культур. I. Методология и методика [электронный ресурс] // Научный журнал Куб-ГАУ, 2006. № 24(8). Режим доступа http://ej.kubagro.ru/2006/08/pdf/27.pdf (дата обращения: 11.04.2018).

4. Иващенко В.Г., Павлюшин В.А. Интенсификация растениеводства и эколого-продукционный баланс агроэкосистем: снижение плодородия почв и фитосанитарная дестабилизация // Вестник защиты растений. 2017. № 3. С. 5-16.

5. Керженцев А. Почвенный кризис и пути его преодоления [электронный ресурс] // Regnum. Информационное агентство. 2018. URL: https://regnum.ru/news/innovatio/2368395.html (дата обращения: 11.04.2018).

6. Швидчено A.B., Савин Т.В., Тысленко А.М., Зуев Д.В., Соловьев О.Ю. Разработка предварительных параметров оптимальной модели сорта яровое тритикале для климатических условий сухой степи Северного Казахстана // Вестник Науки Казахского агротехнического университета имени С. Сейфулли-на. 2016. № 3(90). С. 94-102.

7. Gilbert N. Cross-bred crops get fit faster // Nature. 2014. no 513. 292 p. DOI: 10.1038/513292a.

8. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris II Genetics. 1923. V. 8. P. 552-560.

9. Thoday J.M. Location of polygenes // Nature. 1961. no 191. P. 368-370. DOI: 10.1038/191368a0.

10. Tanksley S.D., Medina-Filho H., Rick C.M. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato // Heredity. 1982. V. 49. P. 11-25. DOI: 10.1038/hdy. 1982.61.

11. Brown A.H.D, Clegg M.T. Isozyme assessment of plant genetic resources // Isozymes: Current Topics in Biological and Medical Research. Volume 11: Medical and Other Applications [Eds. M.C. Rattazzi, J.C. Scandalios, G.S. Whitt], New York, 1983. P. 285-295.

12. Vallejos C.E. Enzyme activity staining // In: Isozymes in Plant Genetics and Breeding. Tanksley S.D., Orton T.J. (eds.). Elsevier, Amsterdam. Volume 1, Part A, 1983. P. 469-516. https://doi.org/10.1016/B978-0-444-42226-2.50031-1.

13. Xu Y., Crouch J. H. Marker-assisted selection in plant breeding: from publications to practice // Crop Science. 2008. V. 48 (2). P. 391-407. DOI: 10.2135/cropsci2007.04.0191.

14. Peleman J.D., van der Voort J.R. Breeding by design // Trends in Plant Science. 2003. V. 8. P. 330-334. DOI: 10.1016/S1360-1385(03)00134-1.

15. Ruane J., Sonnino A. Marker-assisted selection as a tool for genetic improvement of crops, livestock, forestry and fish in developing countries: an overview of the issues // In: E.P. Guimaraes et al. (Eds.): Marker-assisted selection - current status and future perspectives in crops, livestock, forestry and fish. Rome: FAO, 2007. pp. 3-13.

16. Melese L. Marker assisted selection in comparison to conventional plant breeding: review article // Agri Res. Tech: Open Access J. 2018. V 14(2): 555914. DOI: 10.19080/ARTOAJ.2018.14.555914.

17. Jiang G.L. Molecular markers and marker-assisted breeding in plants // In: Anderson S.B. (ed.), Plant breeding - From laboratories to fields. InTech, Croatia. 2013. P. 45-83. DOI: 10.5772/52583.

18. Xu Y., Lu Y., Xie C., Gao S., Wan J., Pra-sanna B.M. Whole-genome strategies for marker-assisted plant breeding//Molecular Breeding. 2012. V 29. P. 833-854. https://doi.org/10.1007/sll032-012-9699-6.

19. Heffner E.L., Lorenz A.J., Jannink J.L., Sorrells M.E. Plant breeding with genomic selection: gain per unit time and cost // Crop Science. 2010. V 50. P. 1681-1690. https://doi.org/10.2135/cropsci2009.11.0662.

20. Roychowdhury R., Taoutaou A., Hakeem K.R., Gawwad M.R.A., Tah J. Molecular marker-assisted technologies for crop improvement // In: Roychowdhury R (ed.). Crop improvement in the era of climate change. International Publication House, 2014. P. 241-258. DOI: 10.13140/RG.2.1.2822.2560.

21. Edwards M. The pipeline of a new generation of foods // In: NAB С Report 22 - Promoting health by linking agriculture, food, and nutrition. North American Agricultural Biotechnology Council (NABC). 2010. P. 57-69.

22. Gupta P.K., Roy J.K., Prasad M. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants // Currrent Science. 2001. V. 80. P. 524-535.

23. Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years // Crop Science. 2008. V. 48. P. 1649-1664. DOI: 10.2135/cropsci2008.03.0131.

24. Vogel B. Marker-Assisted Selection. A biotechnology for plant breeding without genetic engineering // Smart breeding: the next generation. Greenpeace International. Amsterdam, The Netherlands. 2014. R 8-59.

25. Van Damme V., Gomez-Paniagua H., de Vicente M.C. The GCP molecular marker toolkit, an instrument for use in breeding food security crops // Molecular Breeding. 2011. V. 28. P. 597-610. DOI: 10.1007/s11032-010-9512-3.

26. Brumlop S., Finckh M.R. Applications and potentials of marker assisted selection (MAS) in plant breeding. BundesamtfürNaturschutz (BfN), Bonn, Germany, 2011. 178 p.

27. Miah G., Rafii M.Y., Ismail M.R., Puteh A.B., Rahim H.A., Asfaliza R., Latif M.A. Blast resistance in rice: a review of conventional breeding to molecular approaches // Molecular Biology Reports. 2013. V. 40. P. 2369-2388. DOI: 10.1007/sll033-012-2318-0.

28. Fu Y.-В., Yang M.-H., Zeng F., Biligetu B. Searching for an accurate marker-based prediction of an individual quantitative trait in molecular plant breeding // Front. Plant Sсi. 2017. V. 8. ID 1182. DOI: 10.3389/ fpls.2017.01182.

29. Varshney R.K., Gaur PM., Chamarthi S.K., Krishnamurthy L., Tripathi S., Kashiwagi J., Samineni S., Singh V.K., Thudi M., Jaganathan D. Fast-track introgression of “QTL-hotspof ’ for root traits and other drought tolerance trait in JG 11, an elite and leading variety of chickpea (Cicer arietinum L.) // The Plant Genome. 2013. V. 6. P. 1-9. DOI: 10.3835/plantge-nome2013.07.0022.

30. Kahiu N., Kiambi D., Mutitu E.W., Kimani W. Improving drought tolerance in Sorghum bicolor L. Mo-ench: Marker-assisted transfer of the stay-green quantitative trait loci (QTL) from a characterized donor source into a local farmer variety // International Journal of Scientific Research in Knowledge. 2013. V 1. P 154-162. http://dx.doi.org/10.12983/ijsrk-2013-pl54-162.

31. James R.A., Blake C., Zwart A.B., Hare R.A., Rathjen A. J., Munns R. Impact of ancestral wheat sodium exclusion genes Neal and Nax2 on grain yield of durum wheat on saline soils // Functional Plant Biology. 2012. V. 39. P. 609-618. https://doi.oig/10.1071/FP12121.

32. Soto-Cerda B.J., Penaloza E.H., Montenegro A.B., RupayanA.R., Gallardo M.H., Salvo-Garrido H. An efficient marker-assisted backcrossing strategy for enhancing barley (Hordeum vulgare L.) production under acidity and aluminium toxicity // Molecular Breeding. 2013. V. 31. P. 855-866. https://doi.org/10.1007/s11032-013-9839-7.

33. Ashraf M., Foolad M.R. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection // Plant Breeding. 2013. V. 132. P. 10-20. https://doi.org/10.1111/pbr.12000.

34. Kang J.S., Singh H., Singh G., Kang H., Kalra V.P, Kaur J. Abiotic stress and its amelioration in cereals and pulses: a review // Int. J. Curr. Microbiol. App. Sсi. 2017. V. 6(3). P. 1019-1045. DOI: https://doi.org/10.20546/ijcmas.2017.603.120.

35. Ahmad M., Zaffar G., Razvi S.M., Dar Z.A., Mir S.D., Bukhari S.A., Habib M. Resilience of cereal crops to abiotic stress: a review // African J Biotechnology. 2014. V. 13(29). P. 2908-2921. DOI: 10.5897/AJBX2013.13532.

36. Nogoy F.M., Song J.-Y., Ouk S., Rahimi S., Kwon S.W., Kang K.-K., Cho Y.-G. Current applicable DNA markers for marker assisted breeding an abiotic and biotic stress tolerance in rice (Oryza sativa L.) //PlantBreed. Biotech. 2016. V. 4(3). P. 271-284. http:// dx.doi.org/10.9787/PBB.2016.4.3.271.

37. Steele K.A., Price A.H., Witcombe J.R., Shrestha R., Singh B.N., Gibbons J.M., Virk D.S. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection // Theoretical and Applied Genetics. 2013. V. 126. P 101-108. https://doi.org/10.1007/s00122-012-1963-y.

38. Pray C., Nagarajan L., Li L., Huang J., Hu R., Selvaraj K.N., Napasintuwong O., Babu R.C. Potential impact of biotechnology on adaption of agriculture to climate change: the case of drought tolerant rice breeding in Asia // Sustainability. 2011. V. 3. P 1723-1741. DOI: 10.3390/su3101723.

39. Dixit S., Singh A., Cruz M.T.S., Maturan PT., Amante M., Kumar A. Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities // BMC Genetics. 2014. V. 15. P. 16. DOI: 10.1186/1471-2156-15-16.

40. Soto-Cerda B.J., Inostroza-Blancheteau C., Mathias M., Penaloza E., Zuniga J., Munoz G., Ren-gel Z., Salvo-Garrido H. Marker-assisted breeding for TaALMTl, a major gene conferring aluminium tolerance to wheat // Biologia plantarum. 2015. V. 59(1). P. 83-91. DOI: 10.1007/sl0535-014-0474-x.

41. Li C. International research review: using mutation technology to improve crops // Australian Grain. 2008. V. 18(4). P. 36-37.


Review

For citations:


Lisitsyn E.M. Use of marker-assisted selection in creation of models of cereal crops varieties resisted to abiotic stresses. Agricultural Science Euro-North-East. 2018;64(3):4-12. (In Russ.) https://doi.org/10.30766/2072-9081.2018.64.3.04-12

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)