Preview

Аграрная наука Евро-Северо-Востока

Расширенный поиск

Антибиотикорезистентность: эволюционные предпосылки, механизмы, последствия

https://doi.org/10.30766/2072-9081.2018.64.3.13-21

Полный текст:

Аннотация

Статья посвящена проблеме изучения антибиотикорезистентности микроорганизмов, населяющих естественные среды организма человека и животных. В статье проанализированы данные отечественной и мировой литературы о значимости данной проблемы в сфере здравоохранения, ветеринарии, существующих механизмах возникновения устойчивости патогенных микроорганизмов к антибактериальным препаратам и форм приобретенной резистентности. Широкое использование антибиотиков в медицине и ветеринарии обусловили появление высокорезистентных форм микроорганизмов, создавая проблему не только эпизоотологическую, но и эпидемиологическую [АН. Панин с соавт. 2017]. Результатом повсеместного применения антимикробных препаратов явилась селекция устойчивых штаммов среди видов комменсальной, сапрофитной и условно-патогенной микрофлоры. Бактерии, защищаясь от действия антимикробных средств, включают сразу несколько механизмов защиты одновременно, эволюционируя, создают новые пути противодействия [М.А. Шкурат, И.О. Покудина, Д.В. Батталов, 2014]. С одной стороны, это связано с быстрой эволюцией генов, определяющих формирование новых молекулярных механизмов устойчивости, а с другой - формированием новых механизмов адаптации и закрепления в микроэкосистемах. Последнее привело к эволюции микробных сообществ и появлению новых нозологических единиц. Микробные сообщества, существующие во взаимосвязи друг с другом, создают барьер (биоплёнку) в качестве защитного фактора от антибактериальных средств [D. Hughes, D.I. Andersson, 2017]. В настоящее время наблюдается широкое распространение устойчивых по видовому составу микробных сообществ условно-патогенной микрофлоры, что проявляется возникновением микст-инфекций. Это порождает новые проблемы обеспечения здоровья животных и человека

Об авторах

О. И. Захарова
Нижегородский научно-исследовательский ветеринарный институт - филиал ФГБНУ «Федеральный исследовательский центр вирусологии и микробиологии»
Россия


Е. А. Лискова
Нижегородский научно-исследовательский ветеринарный институт - филиал ФГБНУ «Федеральный исследовательский центр вирусологии и микробиологии»
Россия


Т. В. Михалева
Самарский научно-исследовательский ветеринарный институт - филиал ФГБНУ «Федеральный исследовательский центр вирусологии и микробиологии»
Россия


А. А. Блохин
Нижегородский научно-исследовательский ветеринарный институт - филиал ФГБНУ «Федеральный исследовательский центр вирусологии и микробиологии»
Россия


Список литературы

1. Kong К-F., Schneper L., Mathee K. Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology // APMIS: actapathologica, microbiologica, etimmunologica Scandinavica. 2010. 118 V. 1. R 1-36. DOI: 10.1111/j. 1600-0463.2009.02563.x.

2. King D.T., Sobhanifar S., Strynadka N.C.J. One ring to rule them all: Current trends in combating bacterial resistance to the beta-lactams // Protein Science. 2016. V. 25, № 4. P. 787-803. DOI: 10.1002/pro.2889.

3. Roca I., Akova M., Baquero F., et al. The global threat of antimicrobial resistance: science for intervention // New Microbes and New Infections. 2015. №. 6. P. 22-29. DOI: 10.1016/j.nmni.2015.02.007.

4. Nikaido H. Multidrug Resistance in Bacteria // Annual review of biochemistry. 2009. № 78. P 119-146. DOI: 10 1146/annnrevbiochem 78.082907.145923

5. Dyar O.J., Huttner B., Schouten J., Pulcini C. Antimicrobi EESG: What is antimicrobial stewardship? // Clinical Microbiology and Infection. 2017. V. 23(11). P. 793-798. DOI: 10.1016/j.cmi.2017.08.026.

6. Karam G.,Chastre J.,Wilcox M.H., Vincent J.L. Antibiotic strategies in the era of multidrug resistance // Critical Care. 2016. № 20. 9 p. DOI: 10.1186/s13054-016-1320-7).

7. Панин A.H., Комаров A.A., Куликовский A.B., Макаров Д.А. Проблема резистентности к антибиотикам возбудителей болезней, общих для человека и животных // Ветеринария, зоотехния и биотехнология. 2017. № 5. С. 18-24.

8. Leisner J.J., Jorgensen N.O.G., Middelboe М. Predation and selection for antibiotic resistance in natural environments. // Evolutionary Applications. 2016. V. 9. № 3. P. 427-434. DOI: 10.1111/eva.l2353.

9. Nikolaidis I., Favini-Stabile S., Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. // Protein Science: A Publication of the Protein Society. 2014. V. 23. № 3. P. 243-259. DOI: 10.1002/pro.2414.

10. Nikaido H., Pages J-M. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria // FEMS microbiology reviews. 2012. V. 36. № 2. P. 340-363. DOI: 10.1111/j.l574-6976.2011.00290.x.

11. Hollenbeck B.L., Rice L.B. Intrinsic and acquired resistance mechanisms in enterococcus // Virulence. 2012. V. 3. № 5. P. 421-569. DOI: 10.416l/viru.21282).

12. Hughes D., Andersson D.I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance // FEMS Microbiology Reviews. 2017. V. 41. № 3. P. 374-391. DOI: 10.1093/femsre/fux004).

13. Munita J.M., Arias C.A. Mechanisms of Antibiotic Resistance // Microbiology Spectrum. 2016. V. 4. № 2. 24 p. DOI: 10.1128/microbiolspec.VMBF-0016-2015).

14. Culyba M. J., Mo C.Y., Kohli R.M. Targets for Combating the Evolution of Acquired Antibiotic Resistance // Biochemistry. 2015. V. 54. № 23. P. 3573-3582 DOI: 10.1021/acs.biochem.5b00109).

15. Cooper R.M., Tsimring L., Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance // Elife. 2017. № 6. DOI: 10.7554/eLife.25950.

16. Van Hoek A., Mevius D., Guerra В., Mullany P, Roberts A.P., Aarts H.J.M. Acquired antibiotic resistance genes: an overview // Frontiers in Microbiology. 2011. № 2. 27 p. DOI: 10.3389/fmicb.2011.00203.

17. Beceiro A., Tomas M., Bou G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World? // Clinical Microbiology Reviews. 2013. V. 26. № 2. P 185-230. DOI: 10.1128/cmr.00059-12.

18. Miller W.R., Munita J.M., Arias C.A. Mechanisms of antibiotic resistance in enterococci // Expert review of anti-infective therapy. 2014. V. 12. № 10. P. 1221-1236. DOI: 10.1586/14787210.2014.956092.

19. Ghai I., Ghai S. Exploring bacterial outer membrane barrier to combat bad bugs // Infection and Drug Resistance. 2017. № 10. R 261-273. DOI: 10.2147/idr.sl44299.

20. Hawkey PM. The origins and molecular basis of antibiotic resistance // British Medical Journal. 1998. V. 317(7159). P. 657-660. DOI: 10.1136/bmj.317.7159.657.

21. Шкурат M.A., Покудина И.О., Баталов Д.В. Резистентность микроорганизмов к атимикробным препаратам // Живые и биокосные системы: электронный журнал. 2014. № 10. URL: http://jbks.ru/archive/issue-10/article-10. (Дата обращения: 26.04.2018).

22. Schroeder M., Brooks B.D., Brooks A.E. The Complex Relationship between Virulence and Antibiotic Resistance // Genes. 2017. V. 8.№ 1. 23 p. DOI: 10.3390/genes8010039.

23. Tran T.T., Munita J.M., Arias C.A. Mechanisms of Drug Resistance: Daptomycin Resistance // Annals of the New York Academy of Sciences. 2015. V. 1354. P. 32-53. DOI: 10.1111/nyas.12948.

24. Tran T.T., Miller W.R., Shamoo Y., Arias C.A. Targeting cell membrane adaptation as a novel antimicrobial strategy // Current Opinion in Microbiology. 2016. № 33. P. 91-96. DOI: 10.1016/j.mib.2016.07.002.

25. Bush K., Jacoby G.A. Updated Functional Classification of beta-Lactamases // Antimicrobial Agents and Chemotherapy. 2010. V. 54. № 3. P 969-976. DOI: 10.1128/aac.01009-09.

26. Bush K., Jacoby G. A., Medeiros A.A. A functional classification scheme for beta-lactamases and for its correlation with molecular-structure // Antimicrobial Agents and Chemotherapy. 1995. V. 39. № 6. P 12111233. DOI: 10.1128/AAC.39.6.1211.

27. Verraes C., Van Boxstael S., Van Meervenne E., et al. Antimicrobial Resistance in the Food Chain: A Review // International Journal of Environmental Research and Public Health. 2013. V. 10. № 7. P. 2643-2669. DOI: 10.3390/ijerphl0072643.

28. Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm // Virulence. 2013. V. 4. № 3. P. 223-229. DOI: 10.4161/viru.23724.

29. Лазовская А.Л. Воробьёва З.Г., Слинина K.H., Биология микобактерий птичьего вида. Нижний Новгород, 2011. 47 с.

30. Vega N.M., Gore J. Collective antibiotic resistance: mechanisms and implications // Current Opinion in Microbiology. 2014. №. 21. P. 28-34. DOI: 10.1016/j.mib.2014.09.003.

31. Маянский A.M. Патогенетическая микробиология: руководство. Нижний Новгород: Изд-во НижГМА, 2006. 520 с.

32. Титов Л.П., Вотяков В.И., Кожемякин А.К., Мосина Л.И. Эволюция микробов и её медицинское значение // Здравоохранение. 2002. №. 8. С. 30-35.

33. Kalia V.C., Wood Т.К., Kumar P. Evolution of resistance to quorum sensing inhibitors // Microbial ecology. 2014. V. 68. № 1. P. 13-23. DOI: 10.1007/s00248-013-0316-y.

34. Baquero F., Lanza V.F., Canton R., Coque T.M. Public health evolutionary biology of antimicrobial resistance: priorities for intervention // Evolutionary Applications. 2015. V. 8. № 3. P. 223-239. DOI: 10.1111/eva.12235.

35. Wang J., Ma Z-В., Zeng Z-L., Yang X-W., Huang Y., Liu J-H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes // Zoological Research. 2017. V. 38. № 2. P. 55-80. DOI: 10.24272/j.issn.2095-8137.2017.003.

36. Potter R.F., D’Souza A.W., Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae // Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy. 2016. № 29. P. 30-46. DOI: 10.1016/j.drup.2016.09.002.

37. Pagano M., Martins A.F., Barth A.L. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii // Brazilian Journal of Microbiology. 2016. № 47(4). P. 785-792. DOI: 10.1016/j.bjm.2016.06.005).

38. Li H., Liu F., Zhang Y., et al. Evolution of Carbapenem-Resistant Acinetobacter baumannii Revealed through Whole-Genome Sequencing and Comparative Genomic Analysis // Antimicrobial Agents and Chemotherapy. 2015. V. 59. № 2. P. 1168-1176. DOI: 10.1128/AAC.04609-14).

39. Cabot G., Zamorano L., Moyà В., et al. Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates // Antimicrobial Agents and Chemotherapy. 2016. V. 60. № 3. P. 1767-1778. DOI: 10.1128/AAC.02676-15).

40. Costa S.S., Viveiros M., Rosato A.E., Melo-Cristino J., Couto I. Impact of efflux in the development of multidmg resistance phenotypes in Staphylococcus aureus II BMC Microbiology. 2015. № 15. 232 p. DOI: 10.1186/sl2866-015-0572-8.

41. Zaidi M.B., Estrada-Garcia T. Shigella: A Highly Virulent and Elusive Pathogen // Current tropical medicine reports. 2014. V. 1. № 2. P. 1-87. DOI: 10.1007/S40475-014-0019-6.

42. Chang H-H., Cohen T., Grad Y.H., Han-age W.P., O’Brien T.F., Lipsitch M. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens // Microbiology and Molecular Biology Reviews: MMBR. 2015. V. 79. № 1. P. 101-116. DOI: 10.1128/MMBR.00039-14.

43. Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis', an update // Archives of toxicology. 2016. V. 90. № 7. P. 1585-1604. DOI: 10.1007/s00204-016-1727-6.

44. Al-Saeedi M., Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis II Infection and Drug Resistance. 2017. № 10. P. 333-342. DOI: 10.2147/IDR.S144446.

45. Huyen M.N.T., Cobelens F.G.J., Buu T.N., Lan N.T.N., Dung N.H., Kremer K., Tiemersma E.W., van Soolingen D. Epidemiology of Isoniazid Resistance Mutations and Their Effect on Tuberculosis Treatment Outcomes // Antimicrobial Agents and Chemotherapy. 2013. V. 57. № 8. P. 3620-3627. DOI: 10.1128/AAC.00077-13.

46. Васильева E.А., Анохина И.В., Далии M.B., Кравцов Э.Г., Васильев A.C., Яшина H.В., Слинина К.Н., Лискова Е.А. Значение спорового пробиотика Балис для комбинированной терапии туберкулёза с широкой лекарственной устойчивостью // Естественные и гуманитарные науки - устойчивому развитию общества: Межд. сб. науч трудов, посвящённый году Германии в России. М., 2013. С. 35-41.

47. Dheda K., Gumbo T., Gandhi N.R., Murray M., Theron G., Udwadia Z., Migliori G. B. Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis // The Lancet Respiratory medicine. 2014. № 2(4). P. 321-338. DOI: 10.1016/S2213-2600(14)70031-1.


Для цитирования:


Захарова О.И., Лискова Е.А., Михалева Т.В., Блохин А.А. Антибиотикорезистентность: эволюционные предпосылки, механизмы, последствия. Аграрная наука Евро-Северо-Востока. 2018;64(3):13-21. https://doi.org/10.30766/2072-9081.2018.64.3.13-21

For citation:


Zakharova O.I., Liskova E.A., Mikhaleva T.V., Blokhin A.A. Antibiotic resistance: evolutionary prerequisites, mechanisms, consequences. Agricultural Science Euro-North-East. 2018;64(3):13-21. (In Russ.) https://doi.org/10.30766/2072-9081.2018.64.3.13-21

Просмотров: 149


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)