Preview

Agricultural Science Euro-North-East

Advanced search

Antibiotic resistance: evolutionary prerequisites, mechanisms, consequences

https://doi.org/10.30766/2072-9081.2018.64.3.13-21

Abstract

The article focuses on the problem of studying the antibiotic resistance of microorganisms inhabiting the natural environments of the human and animal organism. It analyzes some data published in Russian and world literature on the importance of this problem in the field of public health, veterinary medicine, the existing mechanisms of the emergence of antibiotic resistance in pathogens and forms of acquired resistance. Widespread use of antibiotics in medicine and veterinary led to the emergence of highly resistant pathogens thus creating both an epizootic and epidemiological problem (A.N. Panin et al., 2017). Extensive use of antimicrobials resulted in the selection of resistant strains among the species of commensal, saprophytic and opportunistic microflora. While resisting the effects of antimicrobial agents, bacteria use different sets of defense mechanisms simultaneously and create new counteraction strategies during the evolution (M.A. Shkurat, I.O. Pokudina, D.V. Battalov, 2014). On the one hand, this is due to the evolution of antibiotic resistance genes determining the formation of new molecular mechanisms of resistance, and, on the other hand, to the formation of new mechanisms of adaptation and maintenance in microecosystems. The latter led to the evolution of microbial communities and the emergence of new nosological units. Microbial communities, interacting with each other, create a barrier (biofilm) as a protective factor against antibacterial agents (D. Hughes, D.I. Andersson, 2017). Currently, the microbial communities of the potentially pathogenic microflora, which are stable by species composition, are widely spread, which is manifested by the occurrence of mixed infections. That raises new problems of ensuring the health of animals and humans.

About the Authors

O. I. Zakharova
Nizhny Novgorod Research Veterinary Institute - Branch of Federal Research Center for Virology and Microbiology
Russian Federation


E. A. Liskova
Nizhny Novgorod Research Veterinary Institute - Branch of Federal Research Center for Virology and Microbiology
Russian Federation


T. V. Mikhaleva
Samara Research Veterinary Institute - Branch of Federal Research Center for Virology and Microbiology
Russian Federation


A. A. Blokhin
Nizhny Novgorod Research Veterinary Institute - Branch of Federal Research Center for Virology and Microbiology
Russian Federation


References

1. Kong К-F., Schneper L., Mathee K. Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology // APMIS: actapathologica, microbiologica, etimmunologica Scandinavica. 2010. 118 V. 1. R 1-36. DOI: 10.1111/j. 1600-0463.2009.02563.x.

2. King D.T., Sobhanifar S., Strynadka N.C.J. One ring to rule them all: Current trends in combating bacterial resistance to the beta-lactams // Protein Science. 2016. V. 25, № 4. P. 787-803. DOI: 10.1002/pro.2889.

3. Roca I., Akova M., Baquero F., et al. The global threat of antimicrobial resistance: science for intervention // New Microbes and New Infections. 2015. №. 6. P. 22-29. DOI: 10.1016/j.nmni.2015.02.007.

4. Nikaido H. Multidrug Resistance in Bacteria // Annual review of biochemistry. 2009. № 78. P 119-146. DOI: 10 1146/annnrevbiochem 78.082907.145923

5. Dyar O.J., Huttner B., Schouten J., Pulcini C. Antimicrobi EESG: What is antimicrobial stewardship? // Clinical Microbiology and Infection. 2017. V. 23(11). P. 793-798. DOI: 10.1016/j.cmi.2017.08.026.

6. Karam G.,Chastre J.,Wilcox M.H., Vincent J.L. Antibiotic strategies in the era of multidrug resistance // Critical Care. 2016. № 20. 9 p. DOI: 10.1186/s13054-016-1320-7).

7. Панин A.H., Комаров A.A., Куликовский A.B., Макаров Д.А. Проблема резистентности к антибиотикам возбудителей болезней, общих для человека и животных // Ветеринария, зоотехния и биотехнология. 2017. № 5. С. 18-24.

8. Leisner J.J., Jorgensen N.O.G., Middelboe М. Predation and selection for antibiotic resistance in natural environments. // Evolutionary Applications. 2016. V. 9. № 3. P. 427-434. DOI: 10.1111/eva.l2353.

9. Nikolaidis I., Favini-Stabile S., Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. // Protein Science: A Publication of the Protein Society. 2014. V. 23. № 3. P. 243-259. DOI: 10.1002/pro.2414.

10. Nikaido H., Pages J-M. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria // FEMS microbiology reviews. 2012. V. 36. № 2. P. 340-363. DOI: 10.1111/j.l574-6976.2011.00290.x.

11. Hollenbeck B.L., Rice L.B. Intrinsic and acquired resistance mechanisms in enterococcus // Virulence. 2012. V. 3. № 5. P. 421-569. DOI: 10.416l/viru.21282).

12. Hughes D., Andersson D.I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance // FEMS Microbiology Reviews. 2017. V. 41. № 3. P. 374-391. DOI: 10.1093/femsre/fux004).

13. Munita J.M., Arias C.A. Mechanisms of Antibiotic Resistance // Microbiology Spectrum. 2016. V. 4. № 2. 24 p. DOI: 10.1128/microbiolspec.VMBF-0016-2015).

14. Culyba M. J., Mo C.Y., Kohli R.M. Targets for Combating the Evolution of Acquired Antibiotic Resistance // Biochemistry. 2015. V. 54. № 23. P. 3573-3582 DOI: 10.1021/acs.biochem.5b00109).

15. Cooper R.M., Tsimring L., Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance // Elife. 2017. № 6. DOI: 10.7554/eLife.25950.

16. Van Hoek A., Mevius D., Guerra В., Mullany P, Roberts A.P., Aarts H.J.M. Acquired antibiotic resistance genes: an overview // Frontiers in Microbiology. 2011. № 2. 27 p. DOI: 10.3389/fmicb.2011.00203.

17. Beceiro A., Tomas M., Bou G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World? // Clinical Microbiology Reviews. 2013. V. 26. № 2. P 185-230. DOI: 10.1128/cmr.00059-12.

18. Miller W.R., Munita J.M., Arias C.A. Mechanisms of antibiotic resistance in enterococci // Expert review of anti-infective therapy. 2014. V. 12. № 10. P. 1221-1236. DOI: 10.1586/14787210.2014.956092.

19. Ghai I., Ghai S. Exploring bacterial outer membrane barrier to combat bad bugs // Infection and Drug Resistance. 2017. № 10. R 261-273. DOI: 10.2147/idr.sl44299.

20. Hawkey PM. The origins and molecular basis of antibiotic resistance // British Medical Journal. 1998. V. 317(7159). P. 657-660. DOI: 10.1136/bmj.317.7159.657.

21. Шкурат M.A., Покудина И.О., Баталов Д.В. Резистентность микроорганизмов к атимикробным препаратам // Живые и биокосные системы: электронный журнал. 2014. № 10. URL: http://jbks.ru/archive/issue-10/article-10. (Дата обращения: 26.04.2018).

22. Schroeder M., Brooks B.D., Brooks A.E. The Complex Relationship between Virulence and Antibiotic Resistance // Genes. 2017. V. 8.№ 1. 23 p. DOI: 10.3390/genes8010039.

23. Tran T.T., Munita J.M., Arias C.A. Mechanisms of Drug Resistance: Daptomycin Resistance // Annals of the New York Academy of Sciences. 2015. V. 1354. P. 32-53. DOI: 10.1111/nyas.12948.

24. Tran T.T., Miller W.R., Shamoo Y., Arias C.A. Targeting cell membrane adaptation as a novel antimicrobial strategy // Current Opinion in Microbiology. 2016. № 33. P. 91-96. DOI: 10.1016/j.mib.2016.07.002.

25. Bush K., Jacoby G.A. Updated Functional Classification of beta-Lactamases // Antimicrobial Agents and Chemotherapy. 2010. V. 54. № 3. P 969-976. DOI: 10.1128/aac.01009-09.

26. Bush K., Jacoby G. A., Medeiros A.A. A functional classification scheme for beta-lactamases and for its correlation with molecular-structure // Antimicrobial Agents and Chemotherapy. 1995. V. 39. № 6. P 12111233. DOI: 10.1128/AAC.39.6.1211.

27. Verraes C., Van Boxstael S., Van Meervenne E., et al. Antimicrobial Resistance in the Food Chain: A Review // International Journal of Environmental Research and Public Health. 2013. V. 10. № 7. P. 2643-2669. DOI: 10.3390/ijerphl0072643.

28. Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm // Virulence. 2013. V. 4. № 3. P. 223-229. DOI: 10.4161/viru.23724.

29. Лазовская А.Л. Воробьёва З.Г., Слинина K.H., Биология микобактерий птичьего вида. Нижний Новгород, 2011. 47 с.

30. Vega N.M., Gore J. Collective antibiotic resistance: mechanisms and implications // Current Opinion in Microbiology. 2014. №. 21. P. 28-34. DOI: 10.1016/j.mib.2014.09.003.

31. Маянский A.M. Патогенетическая микробиология: руководство. Нижний Новгород: Изд-во НижГМА, 2006. 520 с.

32. Титов Л.П., Вотяков В.И., Кожемякин А.К., Мосина Л.И. Эволюция микробов и её медицинское значение // Здравоохранение. 2002. №. 8. С. 30-35.

33. Kalia V.C., Wood Т.К., Kumar P. Evolution of resistance to quorum sensing inhibitors // Microbial ecology. 2014. V. 68. № 1. P. 13-23. DOI: 10.1007/s00248-013-0316-y.

34. Baquero F., Lanza V.F., Canton R., Coque T.M. Public health evolutionary biology of antimicrobial resistance: priorities for intervention // Evolutionary Applications. 2015. V. 8. № 3. P. 223-239. DOI: 10.1111/eva.12235.

35. Wang J., Ma Z-В., Zeng Z-L., Yang X-W., Huang Y., Liu J-H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes // Zoological Research. 2017. V. 38. № 2. P. 55-80. DOI: 10.24272/j.issn.2095-8137.2017.003.

36. Potter R.F., D’Souza A.W., Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae // Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy. 2016. № 29. P. 30-46. DOI: 10.1016/j.drup.2016.09.002.

37. Pagano M., Martins A.F., Barth A.L. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii // Brazilian Journal of Microbiology. 2016. № 47(4). P. 785-792. DOI: 10.1016/j.bjm.2016.06.005).

38. Li H., Liu F., Zhang Y., et al. Evolution of Carbapenem-Resistant Acinetobacter baumannii Revealed through Whole-Genome Sequencing and Comparative Genomic Analysis // Antimicrobial Agents and Chemotherapy. 2015. V. 59. № 2. P. 1168-1176. DOI: 10.1128/AAC.04609-14).

39. Cabot G., Zamorano L., Moyà В., et al. Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates // Antimicrobial Agents and Chemotherapy. 2016. V. 60. № 3. P. 1767-1778. DOI: 10.1128/AAC.02676-15).

40. Costa S.S., Viveiros M., Rosato A.E., Melo-Cristino J., Couto I. Impact of efflux in the development of multidmg resistance phenotypes in Staphylococcus aureus II BMC Microbiology. 2015. № 15. 232 p. DOI: 10.1186/sl2866-015-0572-8.

41. Zaidi M.B., Estrada-Garcia T. Shigella: A Highly Virulent and Elusive Pathogen // Current tropical medicine reports. 2014. V. 1. № 2. P. 1-87. DOI: 10.1007/S40475-014-0019-6.

42. Chang H-H., Cohen T., Grad Y.H., Han-age W.P., O’Brien T.F., Lipsitch M. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens // Microbiology and Molecular Biology Reviews: MMBR. 2015. V. 79. № 1. P. 101-116. DOI: 10.1128/MMBR.00039-14.

43. Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis', an update // Archives of toxicology. 2016. V. 90. № 7. P. 1585-1604. DOI: 10.1007/s00204-016-1727-6.

44. Al-Saeedi M., Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis II Infection and Drug Resistance. 2017. № 10. P. 333-342. DOI: 10.2147/IDR.S144446.

45. Huyen M.N.T., Cobelens F.G.J., Buu T.N., Lan N.T.N., Dung N.H., Kremer K., Tiemersma E.W., van Soolingen D. Epidemiology of Isoniazid Resistance Mutations and Their Effect on Tuberculosis Treatment Outcomes // Antimicrobial Agents and Chemotherapy. 2013. V. 57. № 8. P. 3620-3627. DOI: 10.1128/AAC.00077-13.

46. Васильева E.А., Анохина И.В., Далии M.B., Кравцов Э.Г., Васильев A.C., Яшина H.В., Слинина К.Н., Лискова Е.А. Значение спорового пробиотика Балис для комбинированной терапии туберкулёза с широкой лекарственной устойчивостью // Естественные и гуманитарные науки - устойчивому развитию общества: Межд. сб. науч трудов, посвящённый году Германии в России. М., 2013. С. 35-41.

47. Dheda K., Gumbo T., Gandhi N.R., Murray M., Theron G., Udwadia Z., Migliori G. B. Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis // The Lancet Respiratory medicine. 2014. № 2(4). P. 321-338. DOI: 10.1016/S2213-2600(14)70031-1.


Review

For citations:


Zakharova O.I., Liskova E.A., Mikhaleva T.V., Blokhin A.A. Antibiotic resistance: evolutionary prerequisites, mechanisms, consequences. Agricultural Science Euro-North-East. 2018;64(3):13-21. (In Russ.) https://doi.org/10.30766/2072-9081.2018.64.3.13-21

Views: 962


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)