Preview

Agricultural Science Euro-North-East

Advanced search

Is it possible to solve the problem of iodine deficiency in Crimea using green macroalgae Cladophora in animal husbandry? (review)

https://doi.org/10.30766/2072-9081.2025.26.5.945-962

Abstract

Approximately 68 % of the world’s population suffers from iodine deficiency, and more than 70 % of Russia’s territory, including Crimea, is classified as an iodine-deficient area. Salt iodination only does not solve this problem and has a number of negative effects. The review examines factors that cause the development of iodine deficiency in soils and fresh water. It is shown that climate aridity contributes to the development of the element deficiency in the environment. In water, iodine content positively correlates with salinity. Seaweeds, especially brown algae, have long been used to combat iodine deficiency. However, to overcome the problem of iodine deficiency it is more suitable to use green macroalgae from saline and hypersaline waters, having great potential as fertilizers, food and fodder additives. In hypersaline water bodies filamentous algae Cladophora have a high content of biomass – 2.25 kg dry mass/m2 and have great productivity – up to 1 kg (dry mass)/m2 /week, which is two orders of magnitude higher than that of terrestrial plants and significantly more than that of brown algae. The experimental data on the use of a feed additive from Cladophora (1 % of the diet) in feeding rabbits, chickens, and other animals are summarized. Calculations are made showing that the natural resources of green filamentous algae Cladophora, which have enormous productivity, are quite sufficient to solve the problem of iodine deficiency.

About the Authors

N. V. Shadrin
A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Nickolai V. Shadrin, PhD in Biological Science, associate professor, leading researcher, the Laboratory of Extreme Ecosystems,

2 Nakhimov ave., Sevastopol, 299011



E. V. Anufriieva
A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Elena V. Anufriieva, DSc in Biological Science, Head of the Laboratory of Extreme Ecosystems,

2 Nakhimov ave., Sevastopol, 299011



P. S. Ostapchuk
Research Institute of Agriculture of Crimea; A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Pavel S. Ostapchuk, PhD in Agricultural Science, leading researcher, the Department of Field Crops, 150, Kievskaya str, Simferopol, Russian Federation, 295043;

2 Nakhimov ave., Sevastopol, 299011



A. V. Prazukin
A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Alexander V. Prazukin, DSc in Biological Science, leading researcher, the Laboratory of Extreme Ecosystems,

2 Nakhimov ave., Sevastopol, 299011



D. V. Zubochenko
Research Institute of Agriculture of Crimea
Russian Federation

Denis V. Zubochenko, PhD in Biological Science, Deputy Director for Production and Implementation of Innovative Developments,

150, Kievskaya str, Simferopol, 295043



T. A. Kuevda
Research Institute of Agriculture of Crimea; A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Tatyana A. Kuevda, PhD in Biological Science, senior researcher, the Department of Field Crops, 150, Kievskaya str, Simferopol, 295043;

2 Nakhimov ave., Sevastopol, 299011



References

1. Passarelli S., Free C. M., Shepon A., Beal T., Batis C., Golden C. D. Global estimation of dietary micronutrient inadequacies: a odeling analysis. The Lancet Global Health. 2024;12(10):e1590–e1599. DOI: http://doi.org/10.1016/S2214-109X(24)00276-6

2. Skalnaya M. G. Iodine: the biological role and significance for medical practice. Mikroelementy v meditsine = Trace Elements in Medicine (Moscow). 2018;19(2):3–11. (In Russ.). DOI: http://doi.org/10.19112/2413-6174-2018-19-2-3-11

3. Zimmermann M. B. Chapter 25 - Iodine and the iodine deficiency disorders. In: Present Knowledge in Nutrition (Eleventh Edition). Vol. 1: Basic Nutrition and Metabolism. Academic Press: London. 2020. P. 429–441. DOI: http://doi.org/10.1016/b978-0-323-66162-1.00025-1

4. Troshina E. A., Makolina N. P., Kolpakova E. A., Nikiforovich P. A., Isaeva M. P., Abdulkhabirova F. M., Platonova N. M. Strukturnye i morfologicheskie kharakteristiki uzlovogo zoba v usloviyakh khronicheskogo defitsita yoda. Klinicheskaya i eksperimental'naya tireoidologiya = Clinical and experimental thyroidology. 2023;19(1):20–28. (In Russ.). DOI: http://doi.org/10.14341/ket12748

5. Luft M. J., Aldrich S. L., Poweleit E., Prows C. A., Martin L. J., DelBello M. P. et al. Thyroid function screening in children and adolescents with mood and anxiety disorders. The Journal of Clinical Psychiatry. 2019;80(5): 18m12626. DOI: http://doi.org/10.4088/JCP.18m12626

6. Hirtz R., Föcker M., Libuda L., Antel J., Öztürkb D., Kiewert C. et al. Increased prevalence of subclinical hypothyroidism and thyroid autoimmunity in depressed adolescents: results from a clinical cross-sectional study in comparison to the general pediatric population. The Journal of Clinical Psychiatry. 2021;82(2): 20m13511. DOI: http://doi.org/10.4088/JCP.20m13511

7. Damara F. A., Muchamad G. R., Ikhsani R., Syafiyah A. H., Bashari M. H. Thyroid disease and hypothyroidism are associated with poor COVID-19 outcomes: A systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2021;15(6):102312. DOI: http://doi.org/10.1016/j.dsx.2021.102312

8. Xiong X., Wong C. K., Au I. C., Lai F. T., Li X., Wan E. Y. et al. Safety of inactivated and mRNA COVID-19 vaccination among patients treated for hypothyroidism: a population-based cohort study. Thyroid. 2022;32(5):505–514. DOI: http://doi.org/10.1089/thy.2021.068

9. Biban B. G., Lichiardopol C. Iodine deficiency, still a global problem? Current Health Sciences Journal. 2017;43(2):103–111. DOI: http://doi.org/10.12865/CHSJ.43.02.01

10. Sun D., Codling K., Chang S., Zhang S., Shen H., Su X. et al. Eliminating iodine deficiency in China: achievements, challenges and global implications. Nutrients. 2017;9(4):361. DOI: http://doi.org/10.3390/nu9040361

11. Yao N., Zhou C., Xie J., Li X., Zhou Q., Chen J., Zhou S. Assessment of the iodine nutritional status among Chinese school-aged children. Endocrine Connections. 2020;9(5):379–386. DOI: http://doi.org/10.1530/EC-19-0568

12. Farebrother J., Dalrymple K. V., White S. L., Gill C., Brockbank A. et al. Iodine status of pregnant women with obesity from inner city populations in the United Kingdom. European Journal of Clinical Nutrition. 2021;75:801–808. DOI: https://doi.org/10.1038/s41430-020-00796-z

13. Taylor S. R. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta. 1964;28(8):1273–1285. DOI: http://doi.org/10.1016/0016-7037(64)90129-2

14. Fuge R., Johnson C. C. Iodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry. 2015;63:282–302. DOI: http://doi.org/10.1016/j.apgeochem.2015.09.013

15. Suess E., Aemisegger F., Sonke J. E., Sprenger M., Wernli H., Winkel L. H. Marine versus continental sources of iodine and selenium in rainfall at two European high-altitude locations. Environmental Science & Technology. 2019;53(4):1905–1917. DOI: http://doi.org/10.1021/acs.est.8b05533

16. Wang W., Wang X., Zhang B., Chi Q., Liu Q., Zhou J. et al. Spatial distribution of iodine in the pedosphere of China and its influencing factors. Journal of Geochemical Exploration. 2023;248:107191. DOI: http://doi.org/10.1016/j.gexplo.2023.107191

17. Abdel-Moati M. A. Iodine speciation in the Nile River estuary. Marine Chemistry. 1999;65(3–4):211–225. DOI: http://doi.org/10.1016/s0304-4203(99)00003-1

18. Truesdale V. W. The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater: preliminary study with Laminaria digitata and Fucus serratus. Estuarine, Coastal and Shelf Science. 2008;78(1):155–165. DOI: http://doi.org/10.1016/j.ecss.2007.11.022

19. Smyth P. P. Iodine, seaweed, and the thyroid. European Thyroid Journal. 2021;10(2):101–108. DOI: http://doi.org/10.1159/000512971

20. Carpenter L. J., Chance R. J., Sherwen T., Adams T. J., Ball S. M., Evans M. J. et al. Marine iodine emissions in a changing world. Proceedings of the Royal Society A. 2021;477(2247):20200824. DOI: http://doi.org/10.1098/rspa.2020.0824

21. Moriyasu R., Bolster K. M., Hardisty D. S., Kadko D. C., Stephens M. P., Moffett J. W. Meridional survey of the central pacific reveals iodide accumulation in equatorial surface waters and benthic sources in the abyssal plain. Global Biogeochemical Cycles. 2023;37(3):e2021GB007300. DOI: http://doi.org/10.1029/2021GB007300

22. Gilfedder B. S., Lai S. C., Petri M., Biester H., Hoffmann T. Iodine speciation in rain, snow and aerosols. Atmospheric Chemistry and Physics. 2008;8(20):6069–6084. DOI: http://doi.org/10.5194/acp-8-6069-2008

23. Van Bergeijk S. A., Hernández L., Zubía E., Cañavate J. P. Iodine balance, growth and biochemical composition of three marine microalgae cultured under various inorganic iodine concentrations. Marine Biology. 2016;163:107. DOI: http://doi.org/10.1007/s00227-016-2884-0

24. Ermakov V. V., Kovalsky Yu. V. Living matter of the biosphere: mass and chemical elemental composition. Geokhimiya. 2018;(10):931–944. (In Russ.). DOI: http://doi.org/10.1134/S0016752518100060

25. Popova A. Yu., Tutel'yan V. A., Nikityuk D. B. On the new (2021) norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Voprosy pitaniya = Problems of Nutrition. 2021;90(4):6–19. (In Russ.). DOI: http://doi.org/10.33029/0042-8833-2021-90-4-6-19

26. Alferova V. I., Mustafina S. V., Rymar O. D. Iodine status of the population in Russia and the world: what do we have for 2019? Klinicheskaya i eksperimental'naya tireoidologiya = Clinical and experimental thyroidology. 2019;15(2):73–82. (In Russ.). DOI: https://doi.org/10.14341/ket10353

27. Karbownik-Lewińska M., Stępniak J., Iwan P., Lewiński A. Iodine as a potential endocrine disruptor – a role of oxidative stress. Endocrine. 2022;78(2):219–240. DOI: http://doi.org/10.1007/s12020-022-03107-7

28. Berezkin V. Yu., Glebov V. V., Kayukova E. P. The factors of the low iodine concentration in soil cover and drinking waters of the second ridge of the Mountain Crimea. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti = RUDN Journal of Ecology and Life Safety. 2023;31(4):521–532. (In Russ.). DOI: http://doi.org/10.22363/2313-2310-2023-31-4-521-532

29. Shadrin N., Mirzoeva N., Proskurnin V., Anufriieva E. The vertical distribution of 27 elements in bottom sediments reflects the modern history of the hypersaline lagoon. Regional Studies in Marine Science. 2023;67:103183. DOI: http://doi.org/10.1016/j.rsma.2023.103183

30. Bezrukov O. F., Zima D. V., Mikhaylichenko V. Yu., Khabarov O. R., Samarin S. A. Evolution of views on the pathogenesis and surgical treatment of thyroid pathology in the Crimea. Tavricheskiy mediko-biologicheskiy vestnik. 2022;25(3):163–167. (In Russ.). DOI: http://doi.org/10.29039/2070-8092-2022-25-3-163-167

31. Dijck-Brouwer D. J., Muskiet F. A., Verheesen R. H., Schaafsma G., Schaafsma A., Geurts J. M. Thyroidal and extrathyroidal requirements for iodine and selenium: A combined evolutionary and (Patho)Physiological approach. Nutrients. 2022;14(19):3886. DOI: http://doi.org/10.3390/nu14193886

32. Troshina E. A., Senyushkina E. S., Terekhova M. A. The role of selenium in the pathogenesis of thyroid disease. Klinicheskaya i eksperimental'naya tireoidologiya = Clinical and experimental thyroidology. 2018;14(4):192–205. (In Russ.). DOI: https://doi.org/10.14341/ket10157

33. Evstafeva E. V., Golubkina N. A., Boyarinceva Yu. A., Bogdanova A. M., Tymchenko S. L. Selenium status of urban residents on the territory of the Crimean peninsula. Gigiena i sanitariya = Hygiene and Sanitation. 2021;100(2):147–153. (In Russ.). DOI: https://doi.org/10.47470/0016-9900-2021-100-2-147-153

34. Taylor P. N., Albrecht D., Scholz A., Gutierrez-Buey G., Lazarus J. H., Dayan C. M., Okosieme O. E. Global epidemiology of hyperthyroidism and hypothyroidism. Nature Reviews Endocrinology. 2018;14(5):301–316. DOI: http://doi.org/10.1038/nrendo.2018.18

35. Chen X., Liu L., Yao P., Yu D., Hao L., Sun X. Effect of excessive iodine on immune function of lymphocytes and intervention with selenium. Journal of Huazhong University of Science and Technology-Medical Sciences. 2007;27(4):422–425. DOI: http://doi.org/10.1007/s11596-007-0418-1

36. Eliseeva T. Selenium (Se) – body and health importance + top 30 sources. Zhurnal zdorovogo pitaniya i dietologii. 2022;(19):55–64. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=59159965

37. Schöne F., Rajendram R. Chapter 16 – Iodine in farm animals. In: Comprehensive handbook of iodine: nutritional, biochemical pathological and therapeutic aspects. Academic: Burlington. Academic Press, 2009. pp. 151–170. DOI: http://doi.org/10.1016/B978-0-12-374135-6.00016-9

38. Iannaccone M., Ianni A., Elgendy R., Martino C., Giantin M., Cerretani L. et al. Iodine supplemented diet positively affect immune response and dairy product quality in Fresian cow. Animals. 2019;9(11):866. DOI: http://doi.org/10.3390/ani9110866

39. Ermakov V. V. Geochemical ecology and biogeochemical criteria for estimating the ecologic state of biospheric taxons. Geokhimiya. 2015;(3):203–221. (In Russ.). DOI: http://doi.org/10.7868/S0016752515030061

40. Pobilat A. E., Voloshin E. I. Monitoring of iodine in the soil - plant system (review). Vestnik KrasGAU = The Bulletin of KrasGAU. 2020;(10(163)):101–108. (In Russ.). DOI: http://doi.org/10.36718/1819-4036-2020-10-101-108

41. Pilov A. Kh., Tarchokov T. T., Poydenko A. A., Miller T. V. Transformation of the cellular composition of the thyroid gland of cows under conditions of iodine deficiency. Dal'nevostochnyy agrarnyy vestnik = Far Eastern Agrarian Herald. 2023;17(1):52–60. (In Russ.). DOI: http://doi.org/10.22450/19996837_2023_1_52

42. Petrov A. K., Gnezdilova L. A. Action iodine preparations on blood biochemical parameters and feeding qualities of young sheep. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Agronomiya i zhivotnovodstvo = RUDN Journal of Agronomy and Animal Industries. 2015;(1):48–54. (In Russ.). DOI: http://doi.org/10.22363/2312-797X-2015-1-48-54

43. Rosenfeld L. Discovery and Early Uses of Iodine. Journal of Chemical Education. 2000;77(8):984. DOI: http://doi.org/10.1021/ed077p984

44. Condo D., Huyhn D., Anderson A. J., Skeaff S., Ryan P., Makrides M. et al. Iodine status of pregnant women in South Australia after mandatory iodine fortification of bread and the recommendation for iodine supplementation. Maternal & Child Nutrition. 2017;13(4):e12410. DOI: http://doi.org/10.1111/mcn.12410

45. Sindireva A. V., Golubkina N. A., Stepanova O. V., Kekina E. G. The effect of the joint action of selenium and iodine for chemical composition, yield and quality of grain of spring soft wheat in conditions of southern forest-steppe of Omsk region. Uspekhi sovremennoy nauki. 2017;2(10):51–57. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=29905644

46. Deltsov A. A., Belova K. O. Analysis of the market of iodine-containing feed additives for animals. Veterinariya, zootekhniya i biotekhnologiya = Veterinary Medicine, Zootechnics and Biotechnology. 2023;(1):84–92. (In Russ.). DOI: http://doi.org/10.36871/vet.zoo.bio.202301008

47. Völzke H. The EU thyroid Consortium: The Krakow Declaration on Iodine: Tasks and responsibilities for prevention programs targeting iodine deficiency disorders. European Thyroid Journal. 2018;7(4):201–204. DOI: http://doi.org/10.1159/000490143

48. Turrentine J. W. Use of seaweed in the prevention and treatment of goiter. Endocrinology. 1924;8(3):409–419. DOI: http://doi.org/10.1210/endo-8-3-409

49. Blikra M. J., Aakre I., Rigutto‐Farebrother J. Consequences of acute and long‐term excessive iodine intake: A literature review focusing on seaweed as a potential dietary iodine source. Comprehensive Reviews in Food Science and Food Safety. 2024;23(6):e70037. DOI: http://doi.org/10.1111/1541-4337.70037

50. Zava Th. T., Zava D. T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Research. 2011;4:14. DOI: http://doi.org/10.1186/1756-6614-4-14

51. Belousov N. M. Efficiency of Gumiton enriched with iodine using in diets of high-producing cows. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2012;(5):61–63. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=17734111

52. Stroev Yu. I., Churilov L. P. The heaviest bio-element (on the occasion of 200 years since the discovery of iodine). Biosfera. 2012;4(3):313–342. (In Russ.). URL: https://elibrary.ru/item.asp?id=17954326

53. Nishiyama S., Mikeda T., Okada T., Nakamura K., Kotani T., Hishinuma A. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid. 2004;14(12):1077–1083. DOI: http://doi.org/10.1089/thy.2004.14.1077

54. Teas J., Pino S., Critchley A. T., Braverman L. E. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14(10):836. DOI: http://doi.org/10.1089/thy.2004.14.836

55. Bespalov V. G., Tumanyan I. A. Defitsit yoda v pitanii kak mul'tidistsiplinarnaya problema. Lechashchiy vrach = Lechaschi Vrach Journal. 2019;(3):8. (In Russ.). URL: https://elibrary.ru/item.asp?id=37085242

56. Nitschke U., Stengel D. B. Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology. 2016;28:3527–3533. DOI: http://doi.org/10.1007/s10811-016-0868-6

57. Mantri V. A., Gajaria T. K., Rathod S. G., Prasad K. A Mini Review on Iodinophyte Seaweed Resources of India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2024;14:1–12. DOI: http://doi.org/10.1007/s40011-024-01571-x

58. El Zokm G. M., Ismail M. M., El-Said G. F. Halogen content relative to the chemical and biochemical composition of fifteen marine macro and micro algae: nutritional value, energy supply, antioxidant potency, and health risk assessment. Environmental Science and Pollution Research. 2021;28:14893–14908. DOI: http://doi.org/10.1007/s11356-020-11596-0

59. Bityutskaya O. E., Bulli L. I., Donchenko L. V. Study of biology and nutritional value of Ulva rigida C. Ag. as a promising target species for marine aquaculture. Rybnoe khozyaystvo = Fisheries. 2020;(4):94–100. (In Russ.). DOI: http://doi.org/10.37663/0131-6184-2020-4-94-100

60. Shadrin N. V., Anufriieva E. V. Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine). Turkish Journal of Fisheries and Aquatic Sciences. 2013;13(4):603–611. DOI: http://doi.org/10.4194/1303-2712-v13_4_05

61. Shadrin N., Latushkin A., Yakovenko V., Prazukin A., Anufriieva E. Daily and other short-term changes in the ecosystem components of the world's largest hypersaline lagoon Bay Sivash (Crimea). Regional Studies in Marine Science. 2024;77:103643. DOI: http://doi.org/10.1016/j.rsma.2024.103643

62. Prazukin A., Shadrin N., Latushkin A., Anufriieva E. Mats of green filamentous alga Cladophora in the hypersaline Bay Sivash: distribution, structure, environment-forming role and resource potential. Regional Studies in Marine Science. 2025;82:104031. DOI: http://doi.org/10.1016/j.rsma.2025.104031

63. Prazukin A. V., Anufriieva E. V., Shadrin N. V. Biomass of Cladophora (Chlorophyta, Cladophorales) is a promising resource for agriculture with high benefits for economics and the environment. Aquaculture International. 2024; 32:3637–3673. DOI: http://doi.org/10.1007/s10499-023-01342-x

64. Marin O. A., Filimon A. Ulva species from the Romanian Black Sea Coast–between green blooms and nature’s contribution to people. Cercetări Marine-Recherches Marines. 2024;54(1):90–103. DOI: http://doi.org/10.55268/CM.2024.54.90

65. Shadrin N. V., Prazukin A. V., Anufrieva E. V., Firsov Yu. K. The method of obtaining feed additives from algae: Patrnt RF, no. 2823595, 2024. URL: https://www1.fips.ru/registers-doc-view/fips_servlet

66. Munir M., Qureshi R., Bibi M., Khan A. M. Pharmaceutical aptitude of Cladophora: a comprehensive review. Algal Research. 2019;39:101476. DOI: http://doi.org/10.1016/j.algal.2019.101476

67. Shamanskaya A. A., Lyakh V. A., Situn N. V., Fedyanina L. N., Smertina E. S. On the issue of the safety of new ingredients based on marine sea algae for the meat industry. Journal of Agriculture and Environment. 2020;(3(31)):3. DOI: http://doi.org/10.23649/jae.2023.31.3.003

68. Pashtetskaya A. V., Marynich A. P., Ostapchuk P. S., Emel'yanov S. A. Meat productivity of young sheep and dynamics of structural elements of blood on the background of liposomal form of antioxidants. APK Rossii = AgroIndustrial Complex of Russia. 2020;27(3);550−556. (In Russ.). URL: https://www.elibrary.ru/item.asp?edn=tmhaac

69. Pashtetskiy V. S., Zubochenko D. V., Ostapchuk P. S., Zubochenko A. A. Features of the accumulation of iodine in the muscles of rabbits against the background of the use of antioxidants in liposomal form. Agrarnyy vestnik Urala = Agrarian Bulletin of the Urals. 2020;(5(196)):51–58. (In Russ.). DOI: http://doi.org/10.32417/1997-4868-2020-196-5-51-58

70. Ilyazov R. G., Ostapchuk P. S., Kuevda T. A. Effect of liposomal antioxidants (beta-carotene, omega-3, and organic iodine) on the growth and development of young birds. The current state, problems and prospects of agricultural science development: Proceedings of the IV International scientific and practical conference. Simferopol': OOO «Izdatel'stvo Tipografiya «Arial», 2019. pp. 340–341. DOI: http://doi.org/10.33952/09.09.2019.172

71. Ostapchuk P. S., Shadrin N. V., Prazukin A. V., Anufrieva E. V., Kuevda T. A., Firsov Yu. K. et al. Effects of the Cladophora greenfilamentous algaesupplements in the young rabbits'diet on their growthand development. Agrarnyy vestnik Urala = Agrarian Bulletin of the Urals. 2025;25(1):61–73. (In Russ.). DOI: http://doi.org/10.32417/1997-4868-2025-25-01-61-73

72. Shadrin N.V., Ostapchuk P.S., Kuevda T.A., Prazukin A.V., Firsov Yu.K., Gassiev D.D., Zubochenko D.V., Anufriieva E.V. The effect of adding filamentous green algae Cladophora to the diet of rabbits on their blood parameters. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2024;25(6):1137–1146. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2024.25.6.1137-1146

73. Gorstein J. L., Bagriansky J., Pearce E. N., Kupka R., Zimmermann M. B. Estimating the health and economic benefits of universal salt iodization programs to correct iodine deficiency disorders. Thyroid. 2020;30(12):1802–1809. DOI: http://doi.org/10.1089/thy.2019.0719

74. Schaffner M., Rochau U., Mühlberger N., Conrads-Frank A., Rushaj V. Q., Sroczynski G. et al. The economic impact of prevention, monitoring and treatment strategies for iodine deficiency disorders in Germany. Endocrine Connections. 2021;10(1):1–12. DOI: http://doi.org/10.1530/EC-20-0384

75. Troshina E.A. Elimination of iodine deficiency is a concern for the health of the nation. An excursion into the history, scientific aspects and the current state of the legal regulation of the problem in Russia. Problemy endokrinologii = Problems of Endocrinology. 2022;68(4):4–12. (In Russ.). DOI: https://doi.org/10.14341/probl13154


Review

For citations:


Shadrin N.V., Anufriieva E.V., Ostapchuk P.S., Prazukin A.V., Zubochenko D.V., Kuevda T.A. Is it possible to solve the problem of iodine deficiency in Crimea using green macroalgae Cladophora in animal husbandry? (review). Agricultural Science Euro-North-East. 2025;26(5):945-962. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.5.945-962

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)