Fertilizing ability of spermatozoa: its conditioning factors and methods of determination (review)
https://doi.org/10.30766/2072-9081.2025.26.5.963-974
Abstract
Fertilization is a complex process that results in the fusion of gametes. In order to obtain fertilizing ability, spermatozoa need to undergo post-ejaculation processes in the female reproductive tract. These include capacitation, hyperactivation, and acrosomal reaction. Capacitation is a complex process during which the sperm undergoes various changes in metabolism, intracellular concentrations of ions and other substances. The main factors of capacitation are the concentration of intracellular calcium ions, changes in the properties and structure of the plasma membrane, the pH of the medium, as well as the effect of progesterone and cholesterol on the sperm. The resulting hyperactivation leads to a change in the motility of the sperm, as a result of which it reaches the egg for further penetration into it. Then an acrosomal reaction occurs – the release of substances from the acrosome that ensure penetration through the transparent membrane of the oocyte. The fertilizing ability can be determined by various methods: the HBA test is based on the binding of spermatozoa to hyaluronic acid, SpermSlow is used to slow down spermatozoa in a hyaluronic-containing medium. The integrity of the acrosome and the motility of the sperm can be determined using the Acrobeads method, based on the formation of a complex of motile spermatozoa with immunoglobulins coated with antibodies against the protein from the inner surface of the acrosomal membrane. The SPA method allows us to determine the functional ability of spermatozoa to bind to the egg shell. In addition to direct methods that examine the basic parameters and functions of the sperm, there are methods that determine additional parameters, such as the level of oxidative stress and the factors that cause it, and the presence of disorders in the genetic apparatus of the male gamete. The level of oxidative stress and the amount of reactive oxygen species can be determined by reaction to thiobarbituric acid, reaction with nitrosine tetrazolium, by estimating the amount of carbonyl derivatives of amino acid residues in proteins, and by chemoluminescence analysis. DNA breaks can be detected using the TUNEL test, the DNA comet method is used to identify the degree of damage to genomic DNA, and the FISH method is used to analyze the chromosome set of a sperm cell. The cervix contains cervical mucus, which is a necessary factor for fertilization. The ability of spermatozoa to penetrate through it can be determined using auxiliary methods, for example, swim-up. Its essence lies in the fact that in a cultural environment, the natural movement of male gametes is imitated, and those that meet the requirements are selected. The concentration of spermatozoa and the degree of their motility in the cervical mucus are determined by a postcoital test. Taking into account the availability of these techniques from a logistical point of view, the development of domestic kits is relevant.
About the Authors
T. Y. BereletRussian Federation
Tatiana Y. Berelet, student,
Chernigovskaya St., 5, Saint Petersburg, 196084
E. A. Korochkina
Russian Federation
Elena A. Korochkina, DSc in Veterinary Science, Associate Professor,
Chernigovskaya St., 5, Saint Petersburg, 196084
References
1. Peñagaricano F. Genomics and Dairy Bull Fertility. Veterinary Clinics of North America: Food Animal Practice. 2024;40(1):185–190. DOI: https://doi.org/10.1016/j.cvfa.2023.08.005
2. Rahman M. S., Kwon W. S., Pang M. G. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Molecular Reproduction Development. 2017;84(9):749–759. DOI: https://doi.org/10.1002/mrd.22810
3. Morales P., Llanos M. Interaction of human spermatozoa with the zona pellucida of oocyte: development of the acrosome reaction. Frontiers in Bioscience Landmark. 1996;1(4):146–160. DOI: https://doi.org/10.2741/a122
4. Xu F., Guo G., Zhu W., Fan L. Human sperm acrosome function assays are predictive of fertilization rate in vitro: a retrospective cohort study and metaanalysis. Reproductive Biology and Endocrinology. 2018;16(1):81. DOI: https://doi.org/10.1186/s12958-018-0398-y
5. Teves M. E., Roldan E. R. S. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiological Reviews. 2022;102(1):7–60. DOI: https://doi.org/10.1152/physrev.00009.2020
6. Bragina E. E. Interpretation of the spermogram. Structure and function of spermatozoa in normal and in case of fertility disorders. Moscow: izd-vo «Prakticheskaya meditsina», 2024. 240 p.
7. Flesch F. M., Gadella B. M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochimica et Biophysica Acta (BBA) – Reviews on Biomembranes. 2000;1469(3):197–235. DOI: https://doi.org/10.1016/s0304-4157(00)00018-6
8. Jha K. N., Kameshwari D. B., Shivaji S. Role of signaling pathways in regulating the capacitation of mammalian spermatozoa. Cellular and molecular biology (Noisy-le-grand). 2003;49(3):329–340.
9. Mahé C., Zlotkowska A. M., Reynaud K., Tsikis G., Mermillod P., Druart X. et al. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct†. Biology of Reproduction. 2021;105(2):317–331. DOI: https://doi.org/10.1093/biolre/ioab105
10. Töpfer-Petersen E., Petrounkina A. M., Ekhlasi-Hundrieser M. Oocyte-sperm interactions. Animal Reproduction Science. 2000;60-61:653–662. DOI: https://doi.org/10.1016/s0378-4320(00)00128-7
11. Bernecic N. C., Gadella B. M., Leahy T, de Graaf S. P. Novel methods to detect capacitation-related changes in spermatozoa. Theriogenology. 2019;137:56–66. DOI: https://doi.org/10.1016/j.theriogenology.2019.05.038
12. Witte T. S., Schäfer-Somi S. Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa. Animal Reproduction Science. 2007;102(3-4):181–193. DOI: https://doi.org/10.1016/j.anireprosci.2007.07.007
13. Yanagimachi R. Fertility of Mammalian Spermatozoa: Its Development and Relativity. Zygote. 1994;2(4):371–372. DOI: https://doi.org/10.1017/s0967199400002240
14. Cross N. L. Decrease in order of human sperm lipids during capacitation. Biology of Reproduction. 2003;69(2):529–534. DOI: https://doi.org/10.1095/biolreprod.102.013052
15. Darszon A., López-Martínez P., Acevedo J. J., Hernández-Cruz A., Treviño C. L. T-type Ca2+ channels in sperm function. Cell Calcium. 2006;40(2):241–252. DOI: https://doi.org/10.1016/j.ceca.2006.04.028
16. Denisenko V. Yu., Kuzmina T. I., Boytseva E. N. Induction of capacitation of bovine spermatozoa before cryopreservation increases their viability after thawing. Geny i kletki = Genes Cells. 2018;13(2):72–76. (In Russ.). DOI: https://doi.org/10.23868/201808023
17. Leemans B., Stout T. A. E., De Schauwer C., Heras S., Nelis H., Hoogewijs M. et al. Update on mammalian sperm capacitation: How much does the horse differ from other species? Reproduction. 2019;157(5):R181–R197. DOI: https://doi.org/10.1530/REP-18-0541
18. Jin S. K., Yang W. X. Factors and pathways involved in capacitation: how are they regulated? Oncotarget. 2017;8(2):3600–3627. DOI: https://doi.org/10.18632/oncotarget.12274
19. Boerke A., Tsai P. S., Garcia-Gil N., Brewis I. A., Gadella B. M. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology. 2008;70(8):1188–1196. DOI: https://doi.org/10.1016/j.theriogenology.2008.06.021
20. Hess K. C., Jones B. H., Marquez B., Chen Y., Ord T. S., Kamenetsky M. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell. 2005;9(2):249–259. DOI: https://doi.org/10.1016/j.devcel.2005.06.007
21. Tsai W. W., Niessen S., Goebel N., Yates J. R., Guccione E., Montminy M. PRMT5 modulates the metabolic response to fasting signals. Proceedings of the National Academy of Sciences. 2013;110(22):8870–8875. DOI: https://doi.org/10.1073/pnas.1304602110
22. Agarwal A., Virk G., Ong C., du Plessis S. S. Effect of oxidative stress on male reproduction. The World Journal of Men’s Health. 2014;32(1):1–17. DOI: https://doi.org/10.5534/wjmh.2014.32.1.1
23. La Spina F. A., Puga Molina L. C., Romarowski A., Vitale A. M., Falzone T. L. et al. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Developmental Biology. 2016;411(2):172–182. DOI: https://doi.org/10.1016/j.ydbio.2016.02.006
24. Suarez S. S. Control of hyperactivation in sperm. Human Reproduction Update. 2008;14(6):647–657. DOI: https://doi.org/10.1093/humupd/dmn029
25. Belyaeva L. A., Shurygina O. V., Zhilkina M. P., Mironov S. Yu., Kulakova O. V., Bovtunova S. S., Shurygina A. S. Hyperactivation of spermatozoa and its role in the fertilization process. Acta Medica Eurasica. 2024;(1):74–81. (In Russ.). DOI: https://doi.org/10.47026/2413-4864-2024-1-74-81
26. Marchlewska K., Erkiert-Kusiak M., Walczak-Jędrzejowska R., Słowikowska-Hilczer J. Sperm Migration and Hyaluronic Acid Binding: Implications for Male Fertility Evaluation. International Journal of Molecular Sciences. 2024;25(18):9995. DOI: https://doi.org/10.3390/ijms25189995
27. Fedorova I. D., Kuznetsova T. V. Geneticheskie faktory muzh-skogo besplodiya. Zhurnal akusherstva i zhenskikh bolezney = Journal of obstetrics and women's diseases. 2007;56(1):64–72. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=9483636
28. Stauss C. R., Votta T. J., Suarez S. S. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biology of reproduction. 1995;53(6):1280–1285. DOI: https://doi.org/10.1095/biolreprod53.6.1280
29. Ho H. C., Suarez S. S. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction. 2001;122(4):519–526. DOI: https://doi.org/10.1530/rep.0.1220519
30. Makker K., Agarwal A., Sharma R. Oxidative stress & male infertility. Indian Journal of Medical Research. 2009;129(4):357–367.
31. Tesarik J. Acrosome reaction testing. Report of the consensus workshop on advanced diagnostic andrology techniques. ESHRE, AndrologySpecial Interest Group Hum. Reprod, 1996. Vol. 11. pp. 1463–1479.
32. Ramalho-Santos J., Schatten G., Moreno R. D. Control of membrane fusion during spermiogenesis and the acrosome reaction. Biology of Reproduction. 2002;67(4):1043–1051. DOI: https://doi.org/10.1095/biolreprod67.4.1043
33. Baldi E., Luconi M., Bonaccorsi L., Forti G. Nongenomic effects of progesterone on spermatozoa: mechanisms of signal transduction and clinical implications. Frontiers in Bioscience Landmark. 1998;3(4):1051–1059. DOI: https://doi.org/10.2741/a345
34. Bowker Z., Goldstein S., Breitbart H. Protein acetylation protects sperm from spontaneous acrosome reaction. Theriogenology. 2022;191:231–238. DOI: https://doi.org/10.1016/j.theriogenology.2022.08.005
35. Breitbart H., Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. International Journal of Molecular Sciences. 2023;24(23):17005. DOI: https://doi.org/10.3390/ijms242317005
36. Shabtay O., Breitbart H. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Developmental Biology. 2016;415(1):64–74. DOI: https://doi.org/10.1016/j.ydbio.2016.05.008
37. Guidobaldi H. A., Hirohashi N., Cubilla M., Buffone M. G., Giojalas L. C. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Molecular Reproduction and Development. 2017;84(4):310–315. DOI: https://doi.org/10.1002/mrd.22782
38. Xuan X. J., Xu C., Zhao Y. R., Wu K. L., Chen T., Zhang H. B. et al. Application of spontaneous acrosome reaction of sperm in prediction of outcome of in-vitro fertilization and embryo transfer. Zhonghua Yi Xue Za Zhi. 2016;96(16):1285–1288. DOI: https://doi.org/10.3760/cma.j.issn.0376-2491.2016.16.013
39. Nazarenko R. V., Zdanovskiy V. M. Sperm selection methods in IVF programs (literature review). Problemy reproduktsii = Russian Journal of Human Reproduction. 2019;25(2):83–89. (In Russ.). DOI: https://doi.org/10.17116/repro20192502183
40. Ohashi K., Saji F., Kato M., Tsutsui T., Tomiyama T., Tanizawa O. Acrobeads test: a new diagnostic test for assessment of the fertilizing capacity of human spermatozoa. Fertility and Sterility. 1995;63(3):625–630.
41. Hershlag A., Paine T., Scholl G. M., Rosenfeld D. L., Mandel F. S., Zhu J. Z. et al. Acrobeads test as a predictor of fertilization in vitro. American Journal of Reproductive Immunology. 1997;37(4):291–299. DOI: https://doi.org/10.1111/j.1600-0897.1997.tb00232.x
42. Lazarevic J., Wikarczuk M., Somkuti S. G., Barmat L. I., Schinfeld J. S., Smith S. E. Hyaluronan binding assay (HBA) vs. sperm penetration assay (SPA): Can HBA replace the SPA test in male partner screening before in vitro fertilization? Journal of experimental & clinical assisted reproduction. 2010;7:2.
43. Burkman L. J., Coddington C. C., Franken D. R., Kruger T. F., Rosenwaks Z., Hodgen G. D. The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertility and Sterility. 1988;49:688–697.
44. Chemlal H., Bensalem S., Bendiab K., Azzar M., Benberkane A., Lalaoui K. et al. High HbA 1c levels affect motility parameters and overexpress oxidative stress of human mature spermatozoa. Andrologia. 2021;53(1):e13902. DOI: https://doi.org/10.1111/and.13902
45. Atroshchenko M. M., Medvedev D. V. Biochemical markers of stallion sperm quality (review). Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2023;58(2):249–259. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2023.2.249rus
46. Saleh R. A., Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. Journal of Andrology. 2002;23:737–752. 47. Badouard C., Ménézo Y., Panteix G., Ravanat J. L., Douki T., Cadet J., Favier A. Determination of new types of DNA lesions in human sperm. Zygote. 2008;16(1):9–13. DOI: https://doi.org/10.1017/S0967199407004340
47. Neelke D. M., El-Khatib I. Chapter 25 – How to set up an andrology laboratory for a fertility center? Handbook of Current and Novel Protocols for the Treatment of Infertility. Academic Press, 2024. pp. 345–355. DOI: https://doi.org/10.1016/B978-0-323-85687-4.00005-1
48. Kandil H., Farkouh A., Saleh R., Boitrelle F., Agarwal A. Chapter 3 – Sperm DNA fragmentation and male infertility: a comprehensive review for the clinicians. Handbook of Current and Novel Protocols for the Treatment of Infertility. Academic Press, 2024. pp. 29–52. DOI: https://doi.org/10.1016/B978-0-323-85687-4.00018-X
49. Kang S. H., Kwon J. Y., Lee J. K., Seo Y. R. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. Journal of Cancer Prevention. 2013;18(4):277–288. DOI: https://doi.org/10.15430/jcp.2013.18.4.277
50. Ploskonos M. V. The comparative characteristic of techniques of isolation of spermatozoons from native male ejaculate. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics. 2016;61(6):342–347. (In Russ.). DOI: https://doi.org/10.18821/0869-2084-2016-61-6-342-347
51. Rubio C., Gil-Salom M., Simón C., Vidal F., Rodrigo L., Mínguez Y. et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Human Reproduction. 2001;16(10):2084–2092. DOI: https://doi.org/10.1093/humrep/16.10.2084
52. Muriel L., Goyanes V., Segrelles E., Gosálvez J., Alvarez J. G., Fernández J. L. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and FISH analysis. Journal of Andrology. 2007;28(1):38–49. DOI: https://doi.org/10.2164/jandrol.106.000067
53. Kurilo L. F., Lyubashevskaya I. A., Dubinskaya V. P., Gaeva T. N. Karyological analysis of the composition of immature ejaculate germ cells. Urologiya i nephrologiya. 1993;(2):45–47. (In Russ.).
54. Andreeva M. V., Shtaut M. I., Dobrodeeva L. T., Sorokina T. M., Chernykh V. B., Kurilo L. F. Kolichestvennyy kariologicheskiy analiz nezrelykh polovykh kletok iz eyakulyata pri normal'noy kontsentratsii spermatozoidov. Andrologiya i genital'naya khirurgiya. 2022;23(1):37–44. (In Russ.). DOI: https://doi.org/10.17650/1726-9784-2022-23-1-37-44
Review
For citations:
Berelet T.Y., Korochkina E.A. Fertilizing ability of spermatozoa: its conditioning factors and methods of determination (review). Agricultural Science Euro-North-East. 2025;26(5):963-974. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.5.963-974






























