Preview

Agricultural Science Euro-North-East

Advanced search

Technological solution for processing fresh manure and droppings with characteristics of the obtained products

https://doi.org/10.30766/2072-9081.2025.26.5.1142-1158

Abstract

The purpose of the study is to develop a technology that ensures quick, simplified, and environmentally friendly processing of fresh manure and droppings, as well as to determine the composition of the separated fractions. The research was conducted in 2023-2024 in the Stavropol Territory. There has been developed a line of technological equipment for processing fresh manure and droppings, which consists of a storage tank, a submersible homogenizer screw, a submersible pump, a press separator, a container for the solid fraction, and a container for the liquid fraction. On one side of the press separator there is an electric motor, and on the other side there is an opening with a lid on a spring for the exit of the solid fraction. As a result of the technological process, the solid fraction is collected in containers, and the liquid fraction flows through the outlet pipe into the tank for the liquid fraction. Fractions were sampled during the first 3 days from the moment of production and sent for toxicological and agrochemical studies in certified laboratories according to approved methods. As a result, it has been established that the use of a technological equipment line, the distinctive feature of which is the loading of fresh manure into a storage tank pre-filled with water in a ratio of fresh manure or droppings and water from 1.0:1.5 to 1.0:2.5 m3, should solve the problem of eliminating the negative impact of ballast foreign mechanical inclusions on equipment wear; reduce the hazard class of fresh manure/ droppings up to V (practically non-hazardous waste); agrochemical, bacteriological and parasitological composition of liquid and solid fractions corresponded to the requirements of GOST for organic and mineral fertilizers. The obtained liquid fraction can be immediately applied to the soil as a bioorganic fertilizer, and the solid fraction can be used as a substrate for the vital activity of earthworms or composted. In both cases, the processing time of the obtained solid fraction is reduced to one and a half or two months.

About the Authors

V. V. Golembovskii
All-Russian Research Institute of Sheep and Goat Breeding – branch of the North Caucasian Agrarian Center
Russian Federation

ladimir V. Golembovski, PhD in Agricultural Science, leading researcher,

15, Zootechnical Lane, Stavropol, 355017



A. A. Korovin
All-Russian Research Institute of Sheep and Goat Breeding – branch of the North Caucasian Agrarian Center
Russian Federation

Andrey A. Korovin, DSc in Medical Science, leading researcher,

15, Zootechnical Lane, Stavropol,  355017



N. V. Sergeeva
All-Russian Research Institute of Sheep and Goat Breeding – branch of the North Caucasian Agrarian Center
Russian Federation

Natalia V. Sergeeva, PhD in Biology, senior researcher,

15, Zootechnical Lane, Stavropol, 355017



References

1. Vetchinnikov D. V. Cost-effective strategies for recycling agricultural waste. Vestnik Moskovskogo finansovo-yuridicheskogo universiteta MFYuA. 2022;(3):216–230. (In Russ.). DOI: https://doi.org/10.52210/2224669X_2022_3_216

2. Bychkova E., Rozhdestvenskaya L., Podgorbunskikh E., Kudachyova P. The problems and prospects of developing food products from high-protein raw materials. Food Bioscience. 2023;56:103286. DOI: https://doi.org/10.1016/j.fbio.2023.103286

3. Shalavina E. V., Vasilev E. V., Uvarov R. A. Methods for environmentally safe use of animal/poultry manure on private farms in the Leningrad region. AgroEkoInzheneriya = AgroEcoEngineering. 2021;(3(108)):128–140. (In Russ.). DOI: https://doi.org/10.24412/2713-2641-2021-3108-128-140

4. Kovalev N. G., Gridnev P. I., Gridneva T. T. Scientific support for the development of environmentally safed systems of manure utilization. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2016;(1(50)):62–69. (In Russ.). URL: https://elibrary.ru/item.asp?id=25476143

5. Bryukhanov A. Yu., Vasilev E. V., Shalavina E. V. Scientific and technical support for solving the tasks of the Federal Law No. 248 on by-products of animal husbandry. Scientific and information support for the innovative development of the agro-industrial complex: collection of Proceedings of the XVth International Scientific and Practical Conference. Moscow: Rosinformagrotekh, 2023. С. 55–61. URL: https://elibrary.ru/fwuczi

6. Pozdnyakov Sh. R., Bryukhanov A. Yu., Kondratyev S. A., Ignatyeva N. V., Shmakova M. V., Minakova E. A. et al. Prospects for reducing the removal of nutrients from river catchments through the introduction of the best available agricultural production technologies (based on modeling results). Vodnye resursy = Water Resources. 2020;47(5):588–602. (In Russ.). DOI: https://doi.org/10.31857/S0321059620050168

7. Kondratyev S. A., Ershova A. A., Ekholm P., Viktorova N. V. Nutrient load from the Russian territory on the gulf of Finland. Fundamental'naya i prikladnaya gidrofizika = Fundamental and Applied Hydrophysics. 2019;12(2):77–87. (In Russ.). DOI: https://doi.org/10.7868/S2073667319020096

8. Syrchina N. V., Pilip L. V., Ashikhmina T. Ya. Chemical land degradation under the influence of animal husbandry waste. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2022;(3):219–225. (In Russ.). DOI: https://doi.org/10.25750/1995-4301-2022-3-219-225

9. Bryukhanov A. Yu., Vasilyev E. V, Shalavina E. V., Okhtilev M. Yu., Koromyslichenko O. V. An instrument for environmental state and agricultural production’s sustainable development monitoring. Tekhnika i tekhnologii v zhivotnovodstve = Machinery and technologies in livestock. 2023;1(49):78–84. (In Russ.). DOI: https://doi.org/10.22314/27132064-2023-1-78

10. Shalavina E. V., Vasilev E. V. Improving the environmental safety through the development of technological regulations for processing and application of by-products. AgroEkoInzheneriya = AgroEcoEngineering. 2023;(1(114)):141–154. (In Russ.). DOI: https://doi.org/10.24412/2713-2641-2023-1114-141-154

11. Bryukhanov A. Yu., Romanovskaya A. A., Shalavina E. V., Vasilyev E. V., Vertyankina V. Yu. Effect of animal and poultry manure processing technologies on greenhouse gas emissions. Inzhenernye tekhnologii i sistemy = Engineering Technologies and Systems. 2024;34(4):563–583. (In Russ.). DOI: https://doi.org/10.15507/2658-4123.034.202404.563-583

12. Vtoryi V.F., Vtoryi S.V. Sources of carbon dioxide emissions on a cattle dairy farm. Agrarnaya nauka EvroSevero-Vostoka = Agricultural Science Euro-North-East. 2022;23(4):572–579. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2022.23.4.572-579

13. Romantseva Yu. N., Bodur A. M., Maslakova V. V., Kagirova M. V. Analysis of the dynamics and structure of greenhouse gas emissions in Russian agriculture. Agrarnaya nauka. 2024;(2):139–145. (In Russ.). DOI: https://doi.org/10.32634/0869-8155- 2024-379-2-139-145

14. Akhmetshina L. G. Opportunities for Russian agriculture to reduce greenhouse gas emissions and adapt to climatic changes. Vestnik Altayskoy akademii ekonomiki i prava. 2022;(4-1):5–14. (In Russ.). DOI: https://doi.org/10.17513/vaael.2129

15. Al-Sulaimi I. N., Nayak J. K., Alhimali H., Sana A., Al-Mamun A. Effect of volatile fatty acids accumulation on biogas production by sludge-feeding thermophilic anaerobic digester and predicting process parameters. Fermentation. 2022;8(4):184. DOI: https://doi.org/10.3390/fermentation8040184

16. Vasilev E. V., Shalavina E. V. Approach to development of recycling technologies for liquid organic waste generated in animal husbandry. AgroEkoInzheneriya = AgroEcoEngineering. 2022;(3(112)):97–109. (In Russ.). DOI: https://doi.org/10.24412/2713-2641-2022-3112-97-108

17. Vasilyev E. V., Maksimov D. A., Shalavina E. V. Research results of biothermal ferementative processing of organic waste from a pig rearing complex with assessment of emissions generated. Vestnik Ul'yanovskoy gosudarstvennoy sel'skokhozyaystvennoy akademii = Vestnik of Ulyanovsk state agricultural academy. 2023;3(63):200–206. (In Russ.). DOI: https://doi.org/10.18286/1816-4501-2023-3-200-206

18. Uvarov R. A., Shalavina E. V., Vasilev E. V. Tekhnologii uti-lizatsii navoza v regione Baltiyskogo morya: Analiz i nametivshiesya tendentsii. AgroEkoInzheneriya = AgroEcoEngineering. 2021;(3(108)):117–128. (In Russ.). DOI: https://doi.org/10.24412/2713-2641-2021-3108-117-128

19. Zenikov V. I. Promising technology for aerobic fermentation of by-products from agriculture and other industries. Vestnik rossiyskoy sel'skokhozyaystvennoy nauki = Vestnik of the Russian agricultural science. 2024;3:69–72. (In Russ.). DOI: https://doi.org/10.31857/S2500208224030153

20. Baltic Slurry Acidification: Market potential analysis. Edd. S. Neumann, M. Zacharias, R. Stauss, et al. Uppsala: RISE – Research Institutes of Sweden, 2017. 140 p.

21. Khamitov E. A. Strategy for improving the efficiency of utilization of pig farm manure effluents using decanter centrifuges. Agrarnyy vestnik Severnogo Kavkaza = Agrarian Bulletin of the North Caucasus. 2023;(2(50)):45–51. (In Russ.). DOI: https://doi.org/10.31279/222-9345-2023-13-50-45-51

22. Sligan M. E., Gordeev V. V. Comparative evaluation of manure removal systems on cattle farms in the conditions of the northwest of Russia. AgroEkoInzheneriya = AgroEcoEngineering. 2024;(3(120)):168–183. (In Russ.). DOI: https://doi.org/10.24412/2713-2641-2024-3120-168-183

23. Zhang F., Yu W., Liu W., Xu Z. The mixed fermentation technology of solid wastes of agricultural biomass. Frontiers in Energy Research. 2020;8:50. DOI: https://doi.org/10.3389/fenrg.2020.00050

24. Ayilara M. S., Olanrewaju O. S., Babalola O. O., Odeyemi O. Waste management through composting: challenges and potentials. Sustainability. 2020;12(11):4456. DOI: https://doi.org/10.3390/su12114456

25. Meng X., Sørensen P., Møller H. B., Petersen S. O. Greenhouse gas balances and yield-scaled emissions for storage and field application of organic fertilizers derived from cattle manure. Agriculture, Ecosystems & Environment. 2023;345:108327. DOI: https://doi.org/10.1016/j.agee.2022.108327

26. Bryukhanov A. Yu., Popov V. D., Vasilev E. V., Shalavina E. V., Uvarov R.A. Analysis and Solutions to Environmental Problems in Livestock Farming. Sel'skokhozyaystvennye mashiny i tekhnologii = Agricultural Machinery and Technologies. 2021;15(4):48–55. (In Russ.). DOI: https://doi.org/10.22314/2073-7599-2021-15-4-48-55

27. Li L., Liu Y., Kong Y., Zhang J., Shen Yu., Li G. et al. Relating bacterial dynamics and functions to greenhouse gas and odor emissions during facultative heap composting of four kinds of livestock manure. Journal of Environmental Management. 2023;345:118589. DOI: https://doi.org/10.1016/j.jenvman.2023.118589

28. Ellison R. J., Horwath W. R. Reducing Greenhouse Gas Emissions and Stabilizing Nutrients from Dairy Manure Using Chemical Coagulation. Journal of Environmental Quality. 2021;50(2):375–383. DOI: https://doi.org/10.1002/jeq2.20195

29. Ba S., Qu Q., Zhang K., Groot J. C. J. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting. Biosystems Engineering. 2020;193:126–137. DOI: https://doi.org/10.1016/j.biosystemseng.2020.02.015

30. Gage J. Checklist for odor management at compost facilities. BioCycle. 2003;44(5):42–47.

31. Al-Ghussain L. Global warming: review on driving forces and mitigation. Environmental Progress and Sustainable Energy. 2019;38(1):13–21. DOI: https://doi.org/10.1002/ep.13041

32. Zhou G., Xu X., Qiu X., Zhang J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresource Technology. 2019;272:10–18. DOI: https://doi.org/10.1016/j.biortech.2018.09.135

33. Awasthi M. K., Zhang Z., Wang Q., et al. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting. Bioresource Technology. 2017;238:589–601. DOI: https://doi.org/10.1016/j.biortech.2017.04.100

34. Han Z., Sun D., Wang H., Li R., Bao Zh., Qi F. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant. Bioresource Technology. 2018;270:457–466, DOI: https://doi.org/10.1016/j.biortech.2018.09.048

35. Joshi R., Ahmed S. Status and challenges of municipal solid waste management in India: a review. Cogent Environmental Science. 2016;2(1):1139434. DOI: https://doi.org/10.1080/23311843.2016.1139434

36. Ahmad A., Aslam Z., Bellitürk K., Ullah E., Raza A., Asif M. Vermicomposting by bio-recycling of animal and plant waste: A review on the miracle of nature. Journal of Innovative Sciences. 2022;8(2):175–187. DOI: https://doi.org/10.17582/journal.jis/2022/8.2.175.187

37. Ahn H. K., Mulbry W., White J. W., Kondrad S. L. Pile mixing increases greenhouse gas emissions during composting of dairy manure. Bioresource Technology. 2011;102(3):2904–2909. DOI: https://doi.org/10.1016/j.biortech.2010.10.142

38. Wu C., Li W., Wang K., Li Yu. Usage of pumice as bulking agent in sewage sludge composting. Bioresource Technology. 2015;190:516–521. DOI: https://doi.org/10.1016/j.biortech.2015.03.104

39. Awasthi M. K., Duan Y., Awasthi S. K., Liu T., Zhang Z., Kim S.-H., Pandey A. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. Renewable Energy. 2020;152:421–429. DOI: https://doi.org/10.1016/j.renene.2020.01.065

40. Rahman M. A., Haque S., Athikesavan M. М., Kamaludeen M. B. A review of environmental friendly green composites: production methods, current progresses, and challenges. Environmental Science and Pollution Research. 2023;30:16905–16929. DOI: https://doi.org/10.1007/s11356-022-24879-5

41. Tyurin V. G., Mysova G. A., Potemkina N. N., Sakharov A. Yu., Kochish O. I., Biryukov K. N. Veterinary and sanitary assessment of modern biotechnological methods of manure processing. Rossiyskiy zhurnal «Problemy veterinarnoy sanitarii, gigieny i ekologii» = The Russian journal «Problems of Veterinary Sanitation, Hygiene and Ecology». 2022;(2(42)):230–238. (In Russ.). DOI: https://doi.org/10.36871/vet.san.hyg.ecol.202202012

42. Nigussie A., Kuyper T. W., Bruun S., de Neergaard A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. Journal of Cleaner Production. 2016;139:429–439. DOI: https://doi.org/10.1016/j.jclepro.2016.08.058

43. Mahapatra S., Samal K., Dash R. R. Waste Stabilization Pond (WSP) for wastewater treatment: a review on factors, modelling and cost analysis. Journal of Environmental Management. 2022;308:114668. DOI: https://doi.org/10.1016/j.jenvman.2022.114668

44. Chen S., Chen X., Xu J. Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management. 2016;76:105–124. DOI: https://doi.org/10.1016/j.jeem.2015.01.005

45. Yasmin N., Jamuda M., Panda A. K., Samal K., Nayak J K. Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus. 2022;7:100092. DOI: https://doi.org/10.1016/j.nexus.2022.100092

46. Suthar S., Pandey B., Gusain R., Gaur R. Z., Kumar K. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system. Environmental Science and Pollution Research. 2017;24(1):199–207. DOI: https://doi.org/10.1007/s11356-016-7770-2

47. Swati A., Hait S. Greenhouse gas emission during composting and vermicomposting of organic wastes – a review. Clean – Soil, Air, Water. 2018;46(6):1700042. DOI: https://doi.org/10.1002/clen.201700042

48. Amouei A. I., Yousefi Z., Khosrav T. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. Journal of Environmental Health Science and Engineering. 2017;15(1):5. DOI: https://doi.org/10.1186/s40201-017-0269-z

49. Syrchina N. V., Pilip L. V., Ashikhmina T. Ya. The effect of organic fertilizers on the content of trace elements in the green mass of corn. Khimiya rastitel'nogo syr'ya = Chemistry of plant raw material. 2024;(1):372–380. (In Russ.). DOI: https://doi.org/10.14258/jcprm.20240112298

50. Hаrtеnstеin R. Еаrthwоrm Biоtеchnоlоgy аnd Glоbаl Biоgеоchеmistry. Аdvаncеs in Еcоlоgicаl Rеsеаrch. 1986;15;379–409.

51. Timofeeva S. S. Modern Technologies of Bioremediation for Environment. Ekologiya i promyshlennost' Rossii = Ecology and Industry of Russia. 2016;20(1):54–58. (In Russ.). DOI: https://doi.org/10.18412/1816-0395-2016-1-54-58

52. Vasilyev E. V., Egorov S. A., Maksimov D. A., Romanov A. S., Shalavina E. V. Estimation of animal by-products formation and carbon and nitrogen loss with gas emission during aerobic fermentation. Agrarnyy nauchnyy zhurnal = The Agrarian Scientific Journal. 2025;(2):123–132. (In Russ.). DOI: http://dx.doi.org/10.28983/asj.y2025i2pp123-132

53. Miklashevskiy N. V., Bekrenev A. V. Theoretical background of the development of the technology for cleaning the liquid fraction when separating manure masses of industrial type pig farms. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta = Izvestiya Saint-Petersburg State Agrarian University. 2023;(3(72)):91–98. (In Russ.). DOI: https://doi.org/10.24412/2078-1318-2023-3-91-98


Review

For citations:


Golembovskii V.V., Korovin A.A., Sergeeva N.V. Technological solution for processing fresh manure and droppings with characteristics of the obtained products. Agricultural Science Euro-North-East. 2025;26(5):1142-1158. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.5.1142-1158

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)