Preview

Agricultural Science Euro-North-East

Advanced search

Efficiency of black soldier fly zoocompost extract as an organic fertilizer for sunflower microgreens

https://doi.org/10.30766/2072-9081.2025.26.6.1342-1354

Abstract

The selection of a nutrient medium is one of the important factors affecting the yield and determining the quality of microgreens. During the experiment there was studied the possibility of using the remains of the life activity of black soldier fly larvae zoocompost (BSFLZ) as an organic supplement for growing sunflower microgreens under chemoponic conditions. The experimental design: control – filtered water; mineral fertilizer (1.5 ml/l); 1.0 % aqueous extract of BSFLZ (10 ml/l). Plants were grown in plastic containers for 7 days in a closed growbox under intensive light conditions and a controlled microclimate. The results showed that the addition of the BSFLZ extract increased sunflower shoot height by 20–23 % and resulted in the highest microgreens yield – 51 and 27 % higher in dry weight than growing in the control and mineral fertilizers. The biochemical composition of the microgreens varied depending on the treatment. In terms of total chlorophyll and phenol content, seedlings grown with the addition of the BSFLZ extract were slightly inferior to plants grown with a mineral fertilizer solution; however, they exhibited better carotenoid accumulation and a 15 % reduction in nitrate content. As with mineral fertilizers, the addition of the BSFLZ extract increased the total accumulation of macronutrients, particularly calcium, in the microgreens. Economic analysis confirmed the superiority of using zoocompost extract: net profit on organic matter was 6.7 times higher than on mineral-based ones.

About the Authors

J. V. Puhalsky
V. M. Gorbatov Federal Research Center for Food Systems of RAS
Russian Federation

Jan V. Puhalsky, researcher, the Laboratory of Structural Processing of Bioresources, All-Russian Research Institute of Food Additives

Liteiny Ave., 55, St. Petersburg, 191014 



S. I. Loskutov
V. M. Gorbatov Federal Research Center for Food Systems of RAS
Russian Federation

Svyatoslav I. Loskutov, PhD in Agricultural Science, Head of the Laboratory of Industrial Biotechnological Innovations, All-Russian Research Institute of Food Additives

Liteiny Ave., 55, St. Petersburg, 191014 



A. I. Osipov
Agrophysical Research Institute
Russian Federation

Anatoly I. Osipov, DSc in Agricultural Science, professor, chief researcher 

Grazhdansky Prospekt, 14, St. Petersburg, 195220 



A. I. Yakubovskaya
Research Institute of Agriculture of the Crimea
Russian Federation

Alla I. Yakubovskaya, PhD in Biological Science, Head of the Department of Agricultural Microbiology 

Kyiv St., 150, Simferopol, 295453 



V. R. Turkovskaya
Agrophysical Research Institute
Russian Federation

Valeria R. Turkovskaya, research engineer 

Grazhdansky Prospekt, 14, St. Petersburg, 195220 



I. A. Kameneva
Research Institute of Agriculture of the Crimea
Russian Federation

Irina A. Kameneva, PhD in Agricultural Science, Head of the Laboratory of Physiology and Ecology of Microorganisms 

Kyiv St., 150, Simferopol, 295453 



References

1. Khan F. A., Dar Z. M., Dey P., Khan F. U., Amir M., Moinuddin K. D. et al. Microgreens: A New Class of Vegetable with Superfood Potential. American Journal of Biomedical Science and Research. 2024;24(1):577–579. DOI: https://doi.org/10.34297/AJBSR.2024.24.003151

2. Partap M., Sharma D., Deekshit H. N., Thakur M., Verma V., Bhargava B. Microgreen: A tiny plant with superfood potential. Journal of Functional Foods. 2023;107:105697. DOI: https://doi.org/10.1016/j.jff.2023.105697

3. Gunjal M., Singh J., Kaur J., Kaur S., Nanda V., Sharma A., Rasane P. Microgreens: cultivation practices, bioactive potential, health benefits, and opportunities for its utilization as value-added food. Food Bioscience. 2024;62(1):105133. DOI: https://doi.org/10.1016/j.fbio.2024.105133

4. Lone J. K., Pandey R., Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon. 2024;10(4):e25870. DOI: https://doi.org/10.1016/j.heliyon.2024.e25870

5. Zhang Y., Xiao Z., Ager E., Kong L., Tan L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods. 2021;1(1):58–66. DOI: https://doi.org/10.1016/j.jfutfo.2021.07.001

6. Ilakiya T., Parameswari E., Davamani V., Prakash V. Microgreens – Combacting Malnutrition Problem. Biotica Research Today. 2020;2(5):110–112. URL: https://www.researchgate.net/publication/341976939_Microgreens_-Combacting_Malnutrition_Problem

7. Salisu M. A., Oyebamiji Y. O., Ahmed O. K., Shamsudin N. A., Fairuz Y. S. et al. A systematic review of emerging trends in crop cultivation using soilless techniques for sustainable agriculture and food security in post-pandemic. AIMS Agriculture and Food. 2024;9(2):666–692. DOI: https://doi.org/10.3934/agrfood.2024036

8. Bhaswant M., Shanmugam D. K., Miyazawa T., Abe C., Miyazawa T. Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules. 2023;28(2):867. DOI: https://doi.org/10.3390/molecules28020867

9. Guo S., Ge Y., Na Jom K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chemistry Central Journal. 2017;11:95. DOI: https://doi.org/10.1186/s13065-017-0328-7

10. Hassama P., Sirinupong M., Ruangrak E. Comparing sources of nitrogen fertilizer on growth in sunflower microgreens. Journal of Food Science and Agricultural Technology. 2022;6(S):52–58. URL: https://www.researchgate.net/publication/366400475_Comparing_Sources_of_Nitrogen_Fertilizer_on_Growth_in_Sunflower_Microgreens

11. Kumar, Varun T., Verma R. A Comprehensive Review on Soilless Cultivation for Sustainable Agriculture. Journal of Experimental Agriculture International. 2024;46(6):193–207. DOI: https://doi.org/10.9734/jeai/2024/v46i62470

12. Paraschivu M., Cotuna O., Sărățeanu V., Durău C. C., Păunescu R. A. Microgreens-current status, global market trends and forward statements. Scientific papers-series management economic engineering in agriculture and rural development. 2021;21(3):633–640. URL: https://www.researchgate.net/publication/357839471_MICROGREENS_-CURRENT_STATUS_GLOBAL_MARKET_TRENDS_AND_FORWARD_STATEMENTS

13. Singh A., Singh J., Kaur S., Gunjal M., Kaur J., Nanda V. et al. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: A review. Food Chemistry X. 2024;23:101527. DOI: https://doi.org/10.1016/j.fochx.2024.101527

14. Ferreira M. E., Henschel J. M., Olivoto T., Batista D. S., Zeist A. R. Research on microgreens: a bibliometric analysis. Vegetos. 2024;37:1589–1601. DOI: https://doi.org/10.1007/s42535-023-00699-x

15. Puente L., Char C., Patel D., Thilakarathna M. S., Roopesh M. S. Research Trends and Development Patterns in Microgreens Publications: A Bibliometric Study from 2004 to 2023. Sustainability. 2024;16(15):6645. DOI: https://doi.org/10.3390/su16156645

16. Melnikova K. M. The effect of organic fertilizers on the development of microgreens. Nauchny zhurnal molodikh uchenikh. 2025;(2(42)):20–24. (In Russ.). URL: https://elibrary.ru/item.asp?id=82546909

17. Poudel P., Duenas A. E. K., Di Gioia F. Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. Frontiers in Plant Science. 2023;14:1229157. DOI: https://doi.org/10.3389/fpls.2023.1229157

18. Malishevsky M. R., Tarasov S. S., Mikhalev E. V. Production and research of hydroponic feeds and micro-green on the basis of ecologically pure organic fertilizer. Osnovi i perspektivi organicheskikh biotekhnology. 2020;(2):29–32. (In Russ.). URL: https://elibrary.ru/item.asp?id=43859779

19. Pukhalsky Yа. V., Vorobyov N. I., Loskutov S. I., Chukaeva M. A., Glushakov R. I., Babyka A. V., Meshcheryakov D. D., Yakubovskaya A. I. Neyrosetevoy analiz vliyaniya vneshnikh faktorov na mikroelementny profil i biomassu mikrozeleni Brássica júncea L. Tekhnika i tekhnologiya pishchevikh proizvodstv = Food Processing: Techniques and Technology. 2024;54(1):48–59. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2024-1-2487

20. Pendyurin E. A., Rybina S. Yu., Smolenskaya L. M. Using the zoo compost of the Black Lioness as an organic fertilizer. Agrarnaya nauka = Agrarian science. 2020;(7-8):106–110. (In Russ.). DOI: https://doi.org/10.32634/0869-8155-2020-340-7-106-110

21. Elissen H., van der Weide R., Gollenbeek L. Effects of Black Soldier Fly Frass on Plant and Soil Characteristics: A Literature Overview. 2023;527:913–996. DOI: https://doi.org/10.1874/587213

22. Jalil N., Abdullah S., Ahmad I., Basri N., Mohamed Z. Decomposition of food waste from protein and carbohydrate sources by black soldier fly larvae, Hermetia illucens L. Journal of Environmental Biology. 2021;42:756–761. DOI: https://doi.org/10.22438/jeb/42/3(SI)/JEB-04

23. Beesigamukama D., Mochoge B., Korir N. K., Fiaboe K. K., Nakimbugwe D., Khamis F. M. et al. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Management. 2021;119:183–194. DOI: https://doi.org/10.1016/j.wasman.2020.09.043

24. Pendyurin E. A., Zdorovtsov V. A., Ribina S. Yu., Svyatchenko A. V. Agrochemical characteristics of zoocompost black soldier fly larvae. Agrokhimichesky vestnik = Agrochemical Herald. 2024;(3):59–62. (In Russ.). DOI: https://doi.org/10.24412/1029-2551-2024-3-010

25. Beesigamukama D., Mochoge B., Korir N., Menale K., Muriithi B., Kidoido M. et al. Economic and ecological values of frass fertiliser from black soldier fly agro-industrial waste processing. Journal of Insects as Food and Feed. 2022;8(3):245–254. DOI: https://doi.org/10.3920/JIFF2021.0013

26. Lopes I. G., Yong J. W., Lalander C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management. 2022;142:65–76. DOI: https://doi.org/10.1016/j.wasman.2022.02.007

27. Gärttling D., Schulz H. Compilation of black soldier fly frass analyses. Journal of Soil Science and Plant Nutrition. 2022;22:937–943. DOI: https://doi.org/10.1007/s42729-021-00703-w

28. Green T. R., Popa R. Enhanced ammonia content in compost leachate processed by black soldier fly larvae. Applied Biochemistry and Biotechnology. 2012;166:1381–1387. DOI: https://doi.org/10.1007/s12010-011-9530-6

29. Sarpong D. E., Oduro-Kwarteng S., Gyasi S. F., Buamah R., Donkor E., Awuah E., Baah M. K. Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae. International Journal of Recycling of Organic Waste in Agriculture. 2019;8(4):45–54. DOI: https://doi.org/10.1007/s40093-019-0268-4

30. Basri N. E. A., Azman N. A., Ahmad I. K., Suja F., Jalil N. A. A., Amrul N. F. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods. 2022;11(17):2664. DOI: https://doi.org/10.3390/foods11172664

31. Schmitt E., de Vries W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry. 2020;25:100335. DOI: https://doi.org/10.1016/j.cogsc.2020.03.005

32. Siddiqui S. A., Gadge A. S., Hasan M., Rahayu T., Povetkin S. N., Fernando I., Castro-Muñoz R. Future opportunities for products derived from black soldier fly (BSF) treatment as animal feed and fertilizer – A systematic review. Environment, Development and Sustainability. 2024;26:30273–30354. DOI: https://doi.org/10.1007/s10668-024-04673-8

33. Subramaniam S., Chew H. L. A Review of The Effects of Light-Emitting Diodes (LEDs) on The Growth of Sunflower Microgreens and Their Nutritional Potential. Malaysian Applied Biology. 2024;53(5):1-13. DOI: https://doi.org/10.55230/mabjournal.v53i5.3033

34. Puhalsky J. V., Loskutov S. I., Sidorova V. R., Yakubovskaya A. I., Meshcheryakov D. D., Kameneva I. A. Use of Hermetia illucens hermicompost in the technology of growing legume microgreens. Agrarnaya nauka = Agrarian science. 2024;(4):101–107. (In Russ.). DOI: https://doi.org/10.32634/0869-8155-2024-381-4-101-107

35. Shinkarev S. M., Aksenov S. I., Tarasov S. I. Application of zoohumus as organic fertilizer in the protected ground. Plodorodie. 2008;(4):17–18. (In Russ.). URL: https://elibrary.ru/item.asp?id=12799669

36. Romano N., Powell A., Islam S., Fischer H., Renukdas N., Sinha A. K., Francis S. Supplementing aquaponics with black soldier fly (Hermetia illucens) larvae frass tea: effects on the production and composition of sweet potato slips and sweet banana peppers. Aquaculture. 2022;555:738160. DOI: https://doi.org/10.1016/j.aquaculture.2022.738160

37. Fuhrmann A., Wilde B., Conz R. F., Kantengwa S., Konlambigue M., Masengesho B. et al. Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term. Frontiers in Microbiology. 2022;13:994091. DOI: https://doi.org/10.3389/fmicb.2022.994091

38. Chavez M. Y., Villa Ignacio A., Craver J. K., Bousselot J. Investigating Black Soldier Fly Larval (Hermetia illucens) Frass Applications as a Partial Peat Replacement and Liquid Fertilizer in Brassicaceae Crop Production. Agrochemicals. 2025;4(2):8. DOI: https://doi.org/10.3390/agrochemicals4020008

39. Surendra K., Tomberlin J. K., van Huis A., Cammack J. A., Heckmann L.-H. L., Khanal S. K. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF) Waste management. 2020;117:58–80. DOI: https://doi.org/10.1016/j.wasman.2020.07.050

40. Scala A., Cammack J. A., Salvia R., Scieuzo C., Franco A., Bufo S. A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Scientific Reports. 2020;10(1):19448. DOI: https://doi.org/10.1038/s41598-020-76571-8

41. Song S., Ee A. W. L., Tan J. K. N., Cheong J. C., Chiam Z., Arora S. et al. Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. Journal of Cleaner Production. 2020;288:125664. DOI: https://doi.org/10.1016/j.jclepro.2020.125664

42. Lichtenthaler H. K., Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry. 2001;1(1):F4.3.1–F4.3.8. DOI: https://doi.org/10.1002/0471142913.faf0403s01

43. Gu D. D., Wang W. Z., Hu J. D., Zhang X. M., Wang J. B., Wang B. S. Nondestructive determination of total chlorophyll content in maize using three-wavelength diffuse reflectance. Journal of Applied Spectroscopy. 2016;83:541–547. DOI: https://doi.org/10.1007/s10812-016-0325-y

44. Chutimanukul P., Wanichananan P., Janta S., Toojinda T., Clive D., Kriengkrai M. The influence of different light spectra on physiological responses, antioxidant capacity and chemical compositions in two holy basil cultivars. Scientific Reports. 2022;12:588. DOI: https://doi.org/10.1038/s41598-021-04577-x

45. Cataldo D. A., Haroon M., Schrader L. E., Youngs V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis. 1975;6(1):71–86. DOI: https://doi.org/10.1080/00103627509366547

46. Senila M. Recent Advances in the Determination of Major and Trace Elements in Plants Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules. 2024;29(13):3169. DOI: https://doi.org/10.3390/molecules29133169

47. Yener I. Trace element analysis in some plants species by inductively coupled plasma optical emission spectrometry (ICP-OES). Journal of the Institute of Science and Technology. 2019;9(3):1492–1502. DOI: https://doi.org/10.21597/jist.517739

48. Ma D., Guo Y., Ali I., Lin J., Xu Y., Yang M. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. Plant Physiology and Biochemistry. 2024;215:108960. DOI: https://doi.org/10.1016/j.plaphy.2024.108960

49. Gai F., Karamać M., Janiak M. A., Amarowicz R., Peiretti P. G. Sunflower (Helianthus annuus L.) Plants at Various Growth Stages Subjected to Extraction–Comparison of the Antioxidant Activity and Phenolic Profile. Antioxidants. 2020;9(6):535. DOI: https://doi.org/10.3390/antiox9060535

50. Sharma B. An analyses of flavonoids present in the inflorescence of sunflower. Brazilian Journal of Botany. 2019;42:421–429. DOI: https://doi.org/10.1007/s40415-019-00552-z

51. Di Gioia F., Hong J. C., Pisani C., Petropoulos S. A., Bai J., Rosskopf E. N. Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Frontiers in Plant Science. 2023;14:1220691. DOI: https://doi.org/10.3389/fpls.2023.1220691

52. Beesigamukama D., Mochoge B., Korir N., Ghemoh C. J., Subramanian S., Tanga C. M. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer. Scientific Reports. 2021;11(1):14799. DOI: https://doi.org/10.1038/s41598-021-94269-3

53. Gutser R., Ebertseder T., Weber A., Schraml M., Schmidhalter U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Soil Science and Plant Nutrition. 2005;168(4):439–446. DOI: https://doi.org/10.1002/jpln.200520510


Review

For citations:


Puhalsky J.V., Loskutov S.I., Osipov A.I., Yakubovskaya A.I., Turkovskaya V.R., Kameneva I.A. Efficiency of black soldier fly zoocompost extract as an organic fertilizer for sunflower microgreens. Agricultural Science Euro-North-East. 2025;26(6):1342-1354. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.6.1342-1354

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)