Preview

Agricultural Science Euro-North-East

Advanced search

Identification of candidate genes associated with conformation in Holsteinized Black and White cattle based on GWAS analysis

https://doi.org/10.30766/2072-9081.2025.26.6.1375-1401

Abstract

There was conducted a study aimed at identifying genome-wide associations with phenotypic exterior traits in Holsteinized Black-and-White cattle (n=356 heads for 42,247 daughters). During the research there has been used the methodology of the Mosplem Union which includes 4 traits according to system A and 17 traits according to system B. Genotyping was performed on the basis of the Illumina BovineSNP50 (54609 SNPs). The search for candidate genes localized in the region of identified SNPs was performed in the NCBI database for the Bos_taurus_UMD_3.1.1 genome assembly. The CattleQTLdb database was used to search for QTL and areas under selection pressure. According to system "A" in the data region of significantly significant SNPs, 26 candidate genes associated with the studied exterior traits were identified. According to system "B", 22 SNPs associated with exterior traits were identified. The following genes are localized on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 25, 26, 28: ADCY5, FRYL, GOLGB1, ILDR1, ITGB5, MAPK10, SEC22A, STXBP5L, ZP2, ALDH1A2, ERGIC1, KCND2, PAPPA2, PPFIA2, PRDM16, RABGAP1L, SECISBP2, SMYD3, ANO3, DPP10, HPSE2, MAML3, PRKCE, SLCO3A1, ANTXR1, KCTD2, NCOA1, NRG3, TIGAR, VAV3, XYLT1, PRR5L, BFSP1, CDH4, HECW1, MAPKAP1, SPOCK1, SRP68, SYNJ2, DAB1, EPS8, PCDH15, PTPRR, TRPM7, TTYH2, UBR1, USP32, ANGPT1, ITCH, OSBPL10, RAI1, RGS22, SLA2, ZFHX4, BCL9, GFRA2, SLC25A12, CNNM2, IGFBP7, KALRN, MACROD2, PCSK5, UCK2, CNKSR3, CUL3, CYP27A1, RHPN1, TSNARE1, EBF1, PTCH1. The identified genes are associated with quantitative trait loci associated with various indicators that are consistent with those previously annotated by other researchers. The reliability of significant associations for point mutations was within the range of p<1.80E-08 – 0.0001474. Such a tool of genetic research as GWAS analysis allows more efficient planning of obtaining individuals that would meet the economic needs of dairy cattle breeding.

About the Authors

I. S. Nedashkovsky
Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Igor S. Nedashkovsky, PhD in Biological Science, senior researcher, Head of the National Catalog Department of the National Center for Genetic Resources of Farm Animals

Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132



A. F. Konte
Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Aleksandr F. Konte, PhD in Agricultural Science, senior researcher, the Department of Population Genetics and Genetic Basis of Animal Breeding

Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132



A. A. Sermyagin
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L. K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Aleksandr A. Sermyagin, PhD in Agricultural Science, director

Moskovskoe Shosse, 55a, Pushkin, St. Petersburg, 196601



D. N. Koltsov
Federal Research Center for Bast Fiber Crops
Russian Federation

Dmitry N. Koltsov, DCs in Biological Science, director, the separate division Smolensk Research Institute of Agriculture

st. Nakhimova 21 Smolensk, 214025



V. V. Volkova
Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Valeria V. Volkova, PhD in Biological Science, senior researcher, the Laboratory of DNA Technologies in Animal Husbandry

Dubrovitsy village, 60, Podolsk City District, Moscow Region, 142132



References

1. Bytov M. V., Sokolova O. V., Bezborodova N. A., Krasnoperov A. S., Isaeva A. G. Сattle genotyping methods for post-GWAS annotation of SNPs. Agrarny vestnik Urala = Agrarian Bulletin of the Urals. 2023;23(6):67–75. (In Russ.). DOI: https://doi.org/10.32417/1997-4868-2023-235-06-67-75

2. Qanbari S. On the Extent of Linkage Disequilibrium in the Genome of Farm Animals. Frontiers in Genetics. 2019;10:1304. DOI: https://doi.org/10.3389/fgene.2019.01304

3. Fabbri M. C., Dadousis C., Bozzi R. Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds. Animals (Basel). 2020;10(6):1034. DOI: https://doi.org/10.3390/ani10061034

4. Singh A., Kumar A., Mehrotra A., Pandey A. K., Mishra B. P., Dutt T. Estimation of linkage disequilibrium levels and allele frequency distribution in crossbred Vrindavani cattle using 50K SNP data. PLoS One. 2021;16(11):e0259572. DOI: https://doi.org/10.1371/journal.pone.0259572

5. Joiret M., Mahachie John J. M., Gusareva E. S., Van Steen K. Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioData Mining. 2019;12:11. DOI: https://doi.org/10.1186/s13040-019-0199-7

6. Gallagher M. D., Chen-Plotkin A. S. The Post-GWAS Era: From Association to Function. American Journal of Human Genetics. 2018;102(5):717–730. DOI: https://doi.org/10.1016/j.ajhg.2018.04.002

7. Belaya E. V., Beyshova I. S., Selionova M. I., Shulinsky R. S., Ulyanova T. V. Genome-wide search for QLTassociated SNPs to predict the hereditary potential of productivity in kazakh white-headed cattle. Vestnik APK Stavropolya. 2022;11(47):18–25. (In Russ.). DOI: https://doi.org/10.31279/2222-9345-2022-11-47-18-25

8. Bykova O. A., Stepanov A. V., Kostyunina O. V., Kosilov V. I., Shevkunov O. A Study of allelic variants of SNPs associated with the reproductive ability of black-and-white cows. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta = Izvestia Orenburg State Agrarian University. 2023;1(99):283–287. (In Russ.). DOI: https://doi.org/10.37670/2073-0853-2023-99-1-283-287

9. Naryshkina E. N., Sermyagin A. A. Assessment of genetic and genomic variability of fertility traits in stud bulls based on loci associated with selection pressure (review). Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2020;34(9):64–72. (In Russ.). DOI: https://doi.org/10.24411/0235-2451-2020-10912

10. Sermyagin A. A., Bykova O. A., Loretts O. G., Kostyunina O. V., Zinovieva N. A. Genomic variability assess for breeding traits in holsteinizated russian black-and-white cattle using GWAS analysis and ROH patter. Selskokhozyaystvennaya biologiya = Agricultural Biology. 2020;55(2):257–274. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2020.2.257rus

11. Abdelmanova A. S., Fornara M. S., Bardukov N. V., Sermyagin A. A., Dotsev A. V., Zinovieva N. A. Whole genome study of single nucleotide polymorphisms’ associations with withers height in local and transboundary breeds in Russia. Selskokhozyaystvennaya biologiya = Agricultural Biology. 2021;56(6):1111–1122. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2021.6.1111rus

12. Savenko N. A. Breeder of the Moscow region. Moscow: MSKhIP MO, 2006. 84 p.

13. Chen S. Y., Oliveira H. R., Schenkel F. S., Pedrosa V. B., Melka M. G., Brito L. F. Archive Using imputed whole-genome sequence variants to uncover candidate mutations and genes affecting milking speed and temperament in Holstein cattle. Jornal of Dairy science. 2020;103(11):10383–10398. DOI: https://doi.org/10.3168/jds.2020-18897

14. Jaton C., Schenkel F. S., Sargolzaei M., Cánova A., Malchiodi F., Price C. A., Baes C., Miglior F. Genome-wide association study and in silico functional analysis of the number of embryos produced by Holstein donors Jornal of dairy science. 2018;101(8):7248–7257. DOI: https://doi.org/10.3168/jds.2017-13848

15. Campbell E. M. G., Nonneman D., Rohrer G. A. Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8. Journal of Animal Science. 2003;81(7):1706–1714.

16. Wang X., Schutzkus V., Huang W., Rosa G. J. M., Khatib H. Analysis of segregation distortion and association of the bovine FGF2 with fertilization rate and early embryonic survival. Animal Genetics. 2009;40(5):722–728. DOI: https://doi.org/10.1111/j.1365-2052.2009.01904.x

17. Oikonomou G., Michailidis G., Kougioumtzis A., Avdi M., Banos G. Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows. Research in Veterinary Science. 2011;91(2):235–239. DOI: https://doi.org/10.1016/j.rvsc.2011.01.009

18. Marete A., Lund M. S., Boichard D., Ramayo-Caldas Y. A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS One. 2018;13(7):e0199931. DOI: https://doi.org/10.1371/journal.pone.0199931

19. Chen Q., Qu K., Ma Z., Zhan J., Zhang F., Shen J. et al. Genome-Wide Association Study Identifies Genomic Loci Associated With Neurotransmitter Concentration in Cattle. Frontiers in Genetics. 2020;11:139. DOI: https://doi.org/10.3389/fgene.2020.00139

20. Duarte D. A. S., Newbold C. J., Detmann E., Silva F. F., Freitas P. H. F., Veroneze R., Duarte M. S. Genomewide association studies pathway-based meta-analysis for residual feed intake in beef cattle. Animal Genetics. 2019;50(2):150–153. DOI: https://doi.org/10.1111/age.12761

21. Sarlo Davila K. M., Howell A., Nunez A., Orelien A., Roe V., Rodriguez E. et al. Genome-wide association study identifies variants associated with hair length in Brangus cattle. Animal Genetics. 2020;51(5):811–814. DOI: https://doi.org/10.1111/age.12970

22. Cai Z., Guldbrandtsen B., Lund M. S., Sahana G. Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genomics. 2019;20(1):255. DOI: https://doi.org/10.1186/s12864-019-5638-9

23. Gangwar M., Kumar S., Ahmad S. F., Singh A., Agrawal S., Anitta P. L., Kumar A. Identification of genetic variants affecting reproduction traits in Vrindavani cattle. Mammalian Genome. 2024;35(1):99–111. DOI: https://doi.org/10.1007/s00335-023-10023-2

24. Silva A. A., Silva D. A., Silva F. F., Costa C. N., Silva H. T., Lopes P. S. et al. GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle. Journal of Applied Genetics. 2020;61(3):465–476. DOI: https://doi.org/10.1007/s13353-020-00567-3

25. Ilie D. E., Mizeranschi A. E., Mihali C. V., Neamț R. I., Goilean G. V., Georgescu O. I. et al. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes (Basel). 2021;12(10):1495. DOI: https://doi.org/10.3390/genes12101495

26. Chang T., Xia J., Xu L., Wang X., Zhu B., Zhang L. et al. A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle. Animal Genetics. 2018;49(4):312–316. DOI: https://doi.org/10.1111/age.12667

27. Saatchi M., Schnabel R. D., Taylor J. F., Garrick D. J. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 2014;15(1):442. DOI: https://doi.org/10.1186/1471-2164-15-442

28. Leyva-Corona J. C., Reyna-Granados J. R., Zamorano-Algandar R., Sanchez-Castro M. A., Thomas M. G., Enns R. M. et al. Polymorphisms within the prolactin and growth hormone/insulin-like growth factor-1 functional pathways associated with fertility traits in Holstein cows raised in a hot-humid climate. Tropical Animal Health and Production. 2018;50(8):1913–1920. DOI: https://doi.org/10.1007/s11250-018-1645-0

29. Wang J., Li Z. J., Lan X. Y., Hua L. S., Huai Y. T., Huang Y. Z. et al. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Molecular Biology Reports. 2010;37(1):571–577. DOI: https://doi.org/10.1007/s11033-009-9816-8

30. Ibeagha-Awemu E., Peters S., Akwanji K., Imumorin I. G., Zhao X. High density genome wide genotyping-bysequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Scientific Reports. 2016;10(6):31109. DOI: https://doi.org/10.1038/srep31109

31. Valente T. S., Baldi F., Sant'Anna A. C., Albuquerque L. G., Paranhos da Costa M. J. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One. 2016;11(6):e0156956. DOI: https://doi.org/10.1371/journal.pone.0156956

32. Wang X., Wurmser C., Pausch H., Jung S., Reinhardt F., Tetens J. et al. Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS One. 2012;7(7):e40711. DOI: https://doi.org/10.1371/journal.pone.0040711

33. Jiang J., Ma L., Prakapenka D., VanRaden P. M., Cole J. B., Da Ya. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Frontiers in Genetics. 2019;10:412. DOI: https://doi.org/10.3389/fgene.2019.00412

34. Wu J., Wu T., Xie X., Niu Q., Zhao Z., Zhu B. et al. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods. 2023;12(21):3986. DOI: https://doi.org/10.3390/foods12213986

35. Tolleson M. W., Gill C. A., Herring A. D., Riggs P. K., Sawyer J. E., Sanders J. O., Riley D. G. Association of udder traits with single nucleotide polymorphisms in crossbred Bos indicus- Bos taurus cows. Journal of Animal Science. 2017;95(6):2399–2407. DOI: https://doi.org/10.2527/jas.2017.1475

36. Jiang J., Liu L., Gao Y., Shi L., Li Ya., Liang W., Sun D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genetics. 2019;20(1):48. DOI: https://doi.org/10.1186/s12863-019-0751-y

37. Haque M. A., Alam M. Z., Iqbal A., Lee Yu.-M., Dang Ch.-G., Kim J.-J. Genome-Wide Association Studies for Body Conformation Traits in Korean Holstein Population. Animals (Basel). 2023;13(18):2964. DOI: https://doi.org/10.3390/ani13182964

38. Seaton G., Haley C. S., Knott S. A., Kearsey M., Visscher P. M. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Visscher Bioinformatics. 2002;18(2):339–340. DOI: https://doi.org/10.1093/bioinformatics/18.2.339

39. Morris C. A., Cullen N. G., Glass B. C., Hyndman D. L., Manley T. R., Hickey Sh. M. et al. Lee. Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm Genome. 2007;18(1):64–74. DOI: https://doi.org/10.1007/s00335-006-0102-y

40. McGovern S. P., Purfield D. C., Ring S. C., Carthy T. R., Graham D. A., Berry D. P. Candidate genes associated with the heritable humoral response to Mycobacterium avium ssp. paratuberculosis in dairy cows have factors in common with gastrointestinal diseases in humans. Jornal of Dairy Science. 2019;102(5):4249–4263. DOI: https://doi.org/10.3168/jds.2018-15906

41. Higgins M. G., Fitzsimons C., McClure M. C., McKenna C., Conroy S., Kenny D. A. et al. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Scientific Reports. 2018;8(1):14301. DOI: https://doi.org/10.1038/s41598-018-32374-6

42. González-Ruiz S., Strillacci M. G., Durán-Aguilar M., Cantó-Alarcón G. J., Herrera-Rodríguez S. E., Bagnato A. et al. Genome-Wide Association Study in Mexican Holstein Cattle Reveals Novel Quantitative Trait Loci Regions and Confirms Mapped Loci for Resistance to Bovine Tuberculosis. Animals (Basel). 2019;9(9):636. DOI: https://doi.org/10.3390/ani9090636

43. Pacheco H. A., da Silva S., Sigdel A., Mak C. K., Galvão K. N., Texeira R. A. et al. Gene Mapping and Gene-Set Analysis for Milk Fever Incidence in Holstein Dairy Cattle. Frontiers in Genetics. 2018;9:465. DOI: https://doi.org/10.3389/fgene.2018.00465

44. Luo H., Li X., Hu L., Xu W., Chu Q., Liu A. et al. Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. Jornal of Dairy Science. 2021;104(4):4441–4451. DOI: https://doi.org/10.3168/jds.2020-18725

45. Bouwman A. C., Bovenhuis H., Visker M. H. P. W., van Arendonk J. A. M. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genetics. 2011;11(12):43. DOI: https://doi.org/10.1186/1471-2156-12-43

46. Nafikov R. A., Schoonmaker J. P., Korn K. T., Noack K., Garrick D. J., Koehler K. J. et al. Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. Jornal of Dairy Science. 2013;96(4):2605–2616. DOI: https://doi.org/10.3168/jds.2012-6075


Review

For citations:


Nedashkovsky I.S., Konte A.F., Sermyagin A.A., Koltsov D.N., Volkova V.V. Identification of candidate genes associated with conformation in Holsteinized Black and White cattle based on GWAS analysis. Agricultural Science Euro-North-East. 2025;26(6):1375-1401. (In Russ.) https://doi.org/10.30766/2072-9081.2025.26.6.1375-1401

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)