Digital transformation of machine technology for onion harvesting using the theory of artificial neural networks
https://doi.org/10.30766/2072-9081.2019.20.1.84-91
Abstract
The problem of forecasting the qualitative indicators of onion harvesters was solved using the methodologies of the system analysis and synthesis, physical modeling, based on the theory of artificial neural networks. Analysis of the mathematical model of the working process of onion harvesting machine showed that the increase in the quality indicators of onion harvesting can be ensured by the optimal ratio of internal unregulated parameters of separate executive devices. A change in the process parameters of mechanical means for onion harvesting within design limits does not ensure keeping to agrotechnical requirements. This neural network model for the assessment of quality indicators of functioning elements of the machine for harvesting onion set allows to predict the quality performance indicators on the basis of a large number of external impacts X, affecting the harvesting process. The theory of artificial neural networks allows to describe the technological working process of the machine for harvesting onion set, its individual functioning elements, to predict and evaluate the quality performance indicators both of separate executive devices and the entire machine.
About the Authors
A. V. SibirievRussian Federation
Alexey V. Sibiriev - PhD in Engineering, senior researcher, Department of Technology and Machines in Vegetable Farming.
d. 5, 1st Institutsky proezd, Moscow, 109428.
A. S. Dorokhov
Russian Federation
Alexey S. Dorokhov - DSc in Engineering, corresponding member of RAS, Deputy Director for Scientific and Organizational Work.
d. 5, 1st Institutsky proezd, Moscow, 109428.
A. G. Aksenov
Russian Federation
Alexander G. Aksenov - PhD in Engineering, leading researcher, Department of Technology and Machines in Vegetable Farming.
d. 5, 1st Institutsky proezd, Moscow, 109428.
References
1. Aksenov A.G., Sibirev A.V., Kozlova A.I. Metodologiya razrabotki tekhnologicheskikh i tekhnicheskikh resheniy na vozdelyvanii ovoshchnykh kul'tur na primere posadki luka-sevka. [Methodology of development of technological and technical solutions for the cultivation of vegetable crops on the example of planting onion sets]. Intellektual'nye mashinnye tekhnologii i tekhnika dlya realizatsii gosudarstvennoy programmy razvitiya sel'skogo khozyaystva: mat-ly Mezhdunar. nauchn.-tekhn. konf. [Intellectual machine technologies and equipment for the implementation of the state program for the development of agriculture - an international scientific and technical conference]. Moscow: FGBNU «Vserossiyskiy nauchno-issledovatel'skiy institut mekhanizatsii sel'skogo 2015. pp. 284-288. (In Russ.). URL: https://elibrary.ru/item.asp?id=24016033.
2. Borisova L.V., Dimitrov V.P. Lingvisticheskiy podkhod k resheniyu zadachi tekhnologicheskoy regulirovki kombaynov. [Linguistic approach to solving the problem of technological adjustment of combines]. Vestnik Mordovskogo universiteta. 2017. no. 2. pp. 178-179. DOI: 10.15507/0236-2910.027.201702.178-189.
3. Garina S.V., Lyupaev B.M., Nikishin M.B. Optimizatsiya mnogokriterial'nykh resheniy. [Optimization of multicriteria solutions]. Vestnik Mordovskogo universiteta. 2015. Vol. 25. no. 4. pp. 12 -17. (In Russ.). DOI: 10.15507/0236-2910.025.201504.012.
4. Kamaletdinov R.R. Ob"ektno-orientirovannoe imitatsionnoe mo-delirovanie v srede teorii informatsii (informatsionnoe modelirovanie). [Object-oriented simulation modeling in the environment of information theory (information modeling)]. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2012. Vol. 1. no. 14. pp. 186-194. (In Russ.). URL: https://elibrary.ru/item.asp?id=17693760.
5. Zhalnin E.V. Postulaty V.P. Goryachkina i ikh dal'neyshee razvitie. [Postulates by V.P. Goryachkin and their further development]. Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya Moskovskiy gosudarstvennyy agroinzhenernyy universitet im. V.P. Goryachkina. 2008. no. 2. pp. 15-21. (In Russ.). URL: https://cyberleninka.ru/article/n/postulaty-v-p-goryachkina-i-ih-dalneyshee-razvitie.
6. Komashinskiy I.V. Neyronnye seti ikh primenenie v sistemakh upravleniya i svyazi. [Use of neural networks in control and communication systems]. Moscow: Goryachaya liniya – Telekom, 2003. 94 p. (In Russ.).
7. Tsel'sov N.Yu. Neyronnye seti kak metod otsenki kreditosposobnosti zaemshchika. [Neural networks as a method of assessing the creditworthiness of the borrower]. Nauchno-tekhnicheskiy vestnik MGTU im. Baumana. 2015. no. 77. pp. 16-25. (In Russ.).
8. Shchennikov V.N., Shchennikova E.V., Sannikov S.A. Sravnenie modeley s neyronnoy set'yu i OLS-regressiey pri postroenii strategii upravleniya riskom ot dokhoda po indeksu . [Comparison of models with a neural network and OLS regression when building a strat egy for managing risk from income by index]. Vestnik Mordovskogo universiteta. 2017. Vol. 27. no. 1. pp. 12 -20. (In Russ.). DOI: 10.15507/0236-2910.027.201701.012-020.
9. Protasov A.A. Funktsional'noy podkhod k sozdaniyu lukouborochnoy mashiny. [Functional approach to the creation of the harvesting machine]. Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya Moskovskiy gosudarstvennyy agroinzhenernyy universitet im. V.P. Goryachkina. 2011. no. 2 (47). pp. 37-43. (In Russ.). URL: https://cyberleninka.ru/article/n/funktsionalnoy-podhod-k-sozdaniyu-lukouborochnoy-mashiny.
10. Sibirev A.V., Aksenov A.G. Metodologicheskoe obosnovanie mo-del'nogo postroeniya sel'skokhozyaystvennykh mashin iskusstvennymi ney-ronnymi setyami. [Methodological substantiation of the model construction of agricultural machines by artificial neural networks]. Aktual'nye problemy agroinzhenerii v XXI veke: Mezhdunar. nauchn.-prakt. konf. [International scientific and practical conference "Actual problems of agroengineering in the XXI century"]. Mayskiy: FGBOU VO «Belgorodskiy GAU im. V.Ya. Gorina», 2018. pp. 185-191. (In Russ.). URL: https://elibrary.ru/item.asp?id=32380302.
11. Laryushin N.P., Laryushin A.M. Energosberegayushchaya tekhnologiya uborki luka. [Energy saving technology in onion harvesting]. Doklady Rossiyskoy akademii sel'skokhozyaystvennykh nauk. 2009. no. 1. pp. 55 -56. (In Russ.).
12. Krasnoshchekov N.V. Agroinzhenernaya strategiya: ot mekhanizatsii sel'skogo khozyaystva k ego intellektualizatsii. [Agricultural engineering strategy: from the mechanization of agriculture to its intellectualization]. Traktory i sel'khozmashiny. 2010. no. 8. pp. 5-7. (In Russ.). URL: http://elibrary.ru/item.asp?id=17692608.
13. Nurutdinova I.N., Shumskaya N.N., Dimitrova L.A. Ob ispol'zovanii vesovykh koeffitsientov pri formirovanii ekspertnoy informatsii. [On the use of weight factors in the formation of expert information]. Sostoyanie i perspektivy razvitiya sel'skokhozyaystvennogo mashinostroeniya: sb. statey 10-y Mezhdunar. yubileynoy nauch.-prakt. konf. v ramkakh 20-y Mezhdunar. agropromyshlennoy vystavki «Interargomash -2017». [State and prospects for the development of agricultural engineering: Coll. articles of the 10th International jubilee scientific and practical. conf. in the framework of the 20th Intern. agroindustrial exhibition "Interargomash - 2017"]. Rostov-na-Donu: Donskoy gosudarstvennyy tekhnicheskiy universitet, 2017. pp. 332-334. (In Russ.). URL: https://elibrary.ru/item.asp?id=2878143.
Review
For citations:
Sibiriev A.V., Dorokhov A.S., Aksenov A.G. Digital transformation of machine technology for onion harvesting using the theory of artificial neural networks. Agricultural Science Euro-North-East. 2019;20(1):84-91. (In Russ.) https://doi.org/10.30766/2072-9081.2019.20.1.84-91