Preview

Agricultural Science Euro-North-East

Advanced search

Calculation of particle trajectories in the pneumatic separation channel using various methods

https://doi.org/10.30766/2072-9081.2020.21.1.62-70

Abstract

The article presents the comparison testing of particle trajectories in the pneumatic separation channel (PSC) of the pneumatic seed separator SP-2F and its bend, calculated using computer simulation method and two experimental-theoretical methods. They are based on taking into account the real airflow velocity field. In the first variant, the velocity field was measured in an idle mode, in the second at the nominal grain load. The studies were carried out in a vertical PSC with a supporting grid divided into two parts by a partition wall. In the variant with the theoretical velocity field the trajectories of light and grain impurities in the first part of the PSC are shifted closer to the outer wall. In the second part of the channel, particles with hovering speed of 8.0...10.0 m/s are carried upwards, and with hovering speed of 11.0 m/s they fall down into the purified material. In the variant of the experiment in an idle mode, particles with the hovering speed of 7.0...10.0 m/s rise up in the second part of the PSC. In the variant with grain load, particles with the hovering speed of 7.0...9.0 m/s rise upward and ricochet off the inner walls of the PSC and a bend wall, and particles with the hovering speed of more than 10.0 m/s fall down into the purified material. In the variant of the experiment with the grain load, the particle velocity with the hovering speed of 5.0...9.0 m/s at the exit of the PSC bend is more evened as compared to other options - 2.3...2.7 m/s, and the velocity vector of most particles is directed at a lower angle to the horizontal: from 4 up from the horizontal to 17 down from the horizontal. The most accurate is the calculation of particle trajectories using the velocity field in the PSC at the nominal grain load. The results of the study can be useful in the theoretical substantiation of the design parameters of pneumatic systems of grain cleaning machines.

About the Authors

A. I. Burkov
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

Alexander I. Burkov, DSc in Engineering, professor, leading researcher, Head of the Laboratory of Grain and Seed Cleaning Machines

Lenin str., 166a, Kirov, 610007, e-mail: priemnaya@fanc-sv.ru



A. L. Gluhkov
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

Andrei L. Gluhkov, PhD in Engineering, senior researcher, the Laboratory of Grain and Seed Cleaning Machines 

Lenin str., 166a, Kirov, 610007, e-mail: priemnaya@fanc-sv.ru



V. A. Lazukin
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

Victor A. Lazukin, PhD in Engineering, researcher, the Laboratory of Grain and Seed Cleaning Machines 

Lenin str., 166a, Kirov, 610007, e-mail: priemnaya@fanc-sv.ru



References

1. Butovchenko A. V., Doroshenko A. A., Savchenko A. A., Shubin A. I. Ispol'zovanie programmnogo kompleksa "FLOWVISION" dlya opredeleniya kharakteristik vozdushnogo potoka v pnevmokanale. Sostoyanie i perspektivy razvitiya sel'skokhozyaystvennogo mashinostroeniya: materialy 7-oy Mezhdunar. nauch.-prakt. konf. v ramkakh 17-oy Mezhdunar. agropromyshlennoy vystavki "Interagromash-2014", 25-27 fevr. [Use of the software complex "FLOWVISION" for determining the characteristics of the air flow in the pneumatic channel. Current state and prospects of agricultural machine building: Proceedings of the 7th International scientific and practical agroindustrial exhibition "Interagromash-2014", 25-27 fevr. Rostov n/D, 2014. pp. 52-54.

2. Mudarisov S. G., Badretdinov I. D. Optimizatsiya parametrov pnevmaticheskoy sistemy zernoochistitel'noy mashiny. [Optimization of parameters of the pneumatic system of the grain cleaning machine]. Mekhanizatsiya i elektrifikatsiya sel'skogo khozyaystva. 2011;(1):6-7. (In Russ.).

3. Alyamovskiy A. A. Solid Works 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. [Solid Works 2007/2008. Computer modeling in engineering practice]. Saint-Petersburg: BKhV – Peterburg, 2008. 1040 p.

4. Alyamovskiy A. A. Inzhenernye raschety v Solid Works Simulation. [Engineering calculations in Solid Works Simulation]. Moscow: DMK Press, 2010. 464 p. URL: https://www.pdfdrive.com/Инженерные-расчеты-вsolidworks-simulation-e156966405.html

5. Burkov A. I., Aleshkin A. V., Glushkov A. L., Lazykin V. A. Method for determining the trajectory of a grain material particle in a pneumatic separation channel: Patent RF, no. 2669053, 2017. URL: https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/669/053/%D0%98%D0%97-02669053- 00001/document.pdf

6. Burkov A. I., Glushkov A. L., Lazykin V. A. Usovershenstvovannyy eksperimental'no-teoreticheskiy metod rascheta traektorii chastits v pnevmosepariruyushchem kanale. [Improved experimental theoretical method for calculating the trajectory of particles in the pneumo-separating channel]. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2018;(3):87-92. (In Russ.). DOI: https://doi.org/10.30766/2072- 9081.2018.64.3.87-92

7. Burkov A. I., Lazykin V. A. Fraktsionnyy pnevmaticheskiy separator semyan SP-2F. [Fractional pneumatic separator of seeds SP-2F]. Sel'skiy mekhanizator. 2016;(3):4-5. (In Russ.).

8. Revyakin E. L., Antyshev N. M. Tekhnologicheskie trebovaniya k novym tekhnicheskim sredstvam v rastenievodstve. [Technological requirements for new technical means in crop production]. Moscow: Rosinformagrotekh, 2008. 60 p. URL: https://id.b-ok.cc/book/3243361/c765c9

9. Krzysztof J. Wołosz, Jacek Wernik. Pneumatic pulsator design as an example of numerical simulations in engineering applications. Central European Journal of Engineering. 2012;2(1):76-82. DOI: https://doi.org/ 10.2478/s13531-011-0050-5

10. Zhukovetskaya S. Air flowing spatial modeling and simulation with Solidworks CAD. Zeszyty Naukowe Wydziału Elektroniki i Informatyki. 2018;13:79-87. URL: http://yadda.icm.edu.pl/yadda/ele-ment/bwmeta1.element.baztech-0e92a018-6f21-48cf-ae47-cf138a92f844

11. Jiang H, Lu L, Sun K. Computational fluid dynamics (CFD) modeling of particle deposition in a two-dimensional turbulent channel air flow: study of influence factors: Indoor Built Environ 2012;21(2):264-272. DOI: https://doi.org/10.1177/1420326X11414939

12. Porshnev S. V., Belenkova I. V. Chislennye metody na baze Mathcad. [Numerical methods based on Mathcad]. Saint-Petersburg: BKhV-Peterburg, 2012. 456 p. URL: https://avidreaders.ru/book/chislennye-metodyna-baze-mathcad-cd.html

13. Solodov A. P. Mathcad. Differentsial'nye modeli. [Mathcad Differential models]. Moscow: MEI, 2002. 239 p. URL: http://en.bookfi.net/book/719446


Review

For citations:


Burkov A.I., Gluhkov A.L., Lazukin V.A. Calculation of particle trajectories in the pneumatic separation channel using various methods. Agricultural Science Euro-North-East. 2020;21(1):62-70. (In Russ.) https://doi.org/10.30766/2072-9081.2020.21.1.62-70

Views: 557


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)