Preview

Agricultural Science Euro-North-East

Advanced search

Control and management in a complex biotechnical system of a dairy farm

https://doi.org/10.30766/2072-9081.2020.21.5.625-632

Abstract

The research is aimed at profound study of the influence of the "machine" factor (M) in the "human-machineanimal" system ("H-M-A") with the detailed description of the functions performed by "M", taking into account the convey of "M" control and control functions from the subsystems "human-operator" (HO) and "animal" (A). The paper presents the scheme of transformation and expansion of machine functionality in a biotechnical system; mathematical modeling of the dependence of technological signals controlled by the functions of local biotechnological systems (LBTS); mathematical model of diagnostic signals about the corresponding parameters of technical blocks of LBTS. Algorithmization and digitalization of processes on a dairy farm include an extended list of control indicators: technological signals, diagnostic signals and "alarm" signals presented in the article in matrix form. Monitoring the parameters of the most important subsystem "M" of the complex biotechnical system "H-M-A" of a dairy farm provides an increase in the level of automation, digitalization and intellectualization of the corresponding processes of milking, feeding, manure removal and others which creates prerequisites for improving their work and servicing animals as well as increasing the level of autonomy of their functioning. The development of the "machine" factor of the system is advisable on the basis of the machine-centric model of the LBTS, which will gradually expand its functions due to the transferred control and management functions from the corresponding subsystems "HO" and "A". The control parameters are determined at the characteristic reference points of the quarter curves of milk output for the development of refined algorithms for controlling the milking processes of individual udder shares in automated and robotic milking machines of the new generation. A graphical and numerical model of a wheeled feed-pusher robot in the Matlab/Simulink environment is shown. The created mathematical model of motion control by a wheeled feed-pusher robot provides effective interaction of the positioning system and the wheeedl robot drive in digital of autonomous movement.

About the Authors

V. V. Kirsanov
Federal Scientific Agroengineering Center VIM
Russian Federation

Vladimir V. Kirsanov, DSc in Engineering, professor, Head of the Department 

5, 1st Institutsky proezd, Moscow, 109428



R. A. Baisheva
Federal Scientific Agroengineering Center VIM
Russian Federation

Ravza A. Baisheva, PhD in Engineering

5, 1st Institutsky proezd, Moscow, 109428



References

1. Kartashov L. P., Zubkova T. M. Parametricheskiy i strukturnyy sintez tekhnologicheskikh ob"ektov na osnove sistemnogo podkhoda i matematicheskogo modelirovaniya. [Parametric and structural synthesis of technological objects based on the system approach and mathematical modeling]. Ekaterinburg: UrO RAN, 2009. 225 p.

2. Chernoivanov V. I., Sudakov S. K., Tolokonnikov G. K. Biomashsistemy, funktsional'nye sistemy, kategornaya teoriya sistem. [Biomachine systems, functional systems, categorical systems theory]. Moscow: NII normal'noy fiziologii im. P. K. Anokhina RAN, FNATs VIM RAN, 2018. 446 p.

3. Meena Hans, Chaudhary Shalini, Meena Brajendra, Kadain K. S. Farmers' perception towards dairy farm automation in north India. Indian Journal of Dairy Science. 2020;73(2):167-174. DOI: https://doi.org/10.33785/IJDS.2020.v73i02.012

4. Food and Agriculture Organization of the United Nations, 2019. The World of Organic Agriculture Statistics and Emerging Trends. Available at: https://shop.fibl.org/CHen/mwdownloads/download/link/id/1202/?ref=1 (accessed: 20.03.2020).

5. Prabhakar Maurya, Angom Binita, Dharmendra Kumar. Animal Husbandry Sector and Global Climate Change. Conference: International Conference on "Role of Agri-Science, Forestry, Food Technology & Participatory Natural Resource Management for Mitigation of Climate Change (AF-Nature 2015)". At: New Delhi, Jawahar Lal University. 2015;2(1):40-44. URL: https://www.researchgate.net/publication/314151949_Animal_Husbandry_Sector_and_Global_Climate_Change

6. Biotechnology in animal husbandry. Journal for the Improvement of Animal Husbandry. 2016;32(2). Available at: https://istocar.bg.ac.rs/wp-content/uploads/2016/07/BNT-2-za-sajt.pdf (accessed: 15.04.2020).

7. Izmaylov A. Yu., Tsoy Yu. A., Kirsanov V. V. Tekhnologicheskie osnovy algoritmizatsii i tsifrovogo upravleniya protsessami molochnykh ferm. [Technological bases of algorithmization and digital control of dairy farm processes]. Moscow: Nauchnaya mysl', 2019. pp. 84-93.

8. Van De Gucht T., Saeys W., Van Nuffel A., Pluym L., Piccart K., Lauwers L., Vangeyte J., Van Weyenberg S. Farmers' preferences for automatic lameness-detection systems in dairy cattle. Journal of Dairy Science. 2017;100(7):5746-5757. DOI: https://doi.org/10.3168/jds.2016-12285

9. Schütz Christoph G., Schausberge Simon, Schrefl Michael. Building an active semantic data warehouse for precision dairy farming. Journal of Organizational Computing and Electronic Commerce. 2018;28(2):122-141. DOI: https://doi.org/10.1080/10919392.2018.1444344

10. Sundarraj A. A., Rajathi A. A., Vishaal S. C., Prakash M. S., Sam A. A., Seihenbalg S. S. Food Biotechnological Applications in Dairy and Dairy Products. Journal of Pharmacy Research. 2018;12(4):1-6. URL: https://www.researchgate.net/publication/324167849_FOOD_BIOTECHNOLOGICAL_APPLICATIONS_IN_DAIRY_AND_DAIRY_PRODUCTS

11. Alphonse Chapanis, William K. Holstein. Human-factors engineering. BioEngineering. Available at: https://www.britannica.com/topic/human-factors-engineering (accessed: 25.06.2020).

12. Tsoy Yu. A., Baisheva R. A. Tekhnologicheskie aspekty sozdaniya «umnoy» molochnoy fermy. [Technological aspects of smart dairy farm development]. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science EuroNorth-East. 2019;20(2):192-199. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2019.20.2.192-199

13. Ron Berger, Anat Hovav. Using a Dairy Management Information System to Facilitate Precision Agriculture: The Case of the AfiMilk® System. Information Systems Management. 2013;30(1):21-34. DOI: https://doi.org/10.1080/10580530.2013.739885

14. Sorensen C. G., Fountas S., Nash E., Personen L., Bochtis D., Pedersen S. M., Basso B., Blackmore S. B. Conceptual model of a future farm management information system. Computers and Electronics in Agriculture. 2010;72(1):37-47. DOI: https://doi.org/10.1016/j.compag.2010.02.003

15. Schönfeld M., Heil R., Bittner L. Big Data on a Farm − Smart Farming. In: Hoeren T., Kolany-Raiser B. (eds) Big Data in Context. SpringerBriefs in Law. Springer, Cham. 2018. DOI: https://doi.org/10.1007/978-3-319-62461-7_12

16. Nikitin E., Pavkin D. Modeling the motion processes of a multifunctional robot for animal units. E3S Web Conf. 2020;164:06023. DOI: https://doi.org/10.1051/e3sconf/202016406023


Review

For citations:


Kirsanov V.V., Baisheva R.A. Control and management in a complex biotechnical system of a dairy farm. Agricultural Science Euro-North-East. 2020;21(5):625-632. (In Russ.) https://doi.org/10.30766/2072-9081.2020.21.5.625-632

Views: 580


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)