Disequilibrium linkage (gametic disequilibrium) of structural genes in the bovine population
https://doi.org/10.30766/2072-9081.2021.22.3.401-408
Abstract
In the population of Kholmogor cattle (n=824), gametic disequilibrium was studied for alleles of the polymorphic loci β-Lg (LGB), β-Cn (CSN2) and æ-Cn (CSN3). In purebred Kholmogor cattle, the β-casein polymorphism is determined by three alleles with the frequencies of CSN2А 1 – 0.368±0.0076, CSN2А 2 – 0.497±0.0078, CSN2B – 0.136±0.0056 and the frequencies of acasein of CSN3А – 0.689 ±0.0061, CSN3B – 0.311±0.0061, respectively. The beta-lactoglobulin polymorphism is controlled by two alleles LGBA and LGBB with a frequency of 0.237±0.0048 and 0.763±0.0048, respectively. In the population of breeding plants, the gametic disequilibrium was revealed according to the alleles of loci CSN2 and LGB; CSN2 and CSN3. The factor that caused the gametic disequilibrium was probably the initial difference between native Russian cattle and black-and-white cattle of Western Europe on the basis of which the Kholmogor breed gene pool was developed. The population showed an excess of haplotypes β-CnВæ-CnВ, β-CnВβ-LgВ (the "attraction" phase), apparently inherited mainly from native Russian cattle, and β-CnА 1æ-CnА, β-CnА 2β-LgА characteristic mainly for black-and-white cattle of Western Europe and a lack of β-CnВæ-CnА, β-CnВβ-LgА (the "repulsion" phase), probably due to the low frequency of these haplotypes in both initial breeds. The role of various factors in the occurrence and maintenance of gamete disequilibrium is discussed. It is suggested that for alleles of non-linked loci, longtime retention of gametic disequilibrium in population is most likely supported by selection
About the Authors
V. S. MatyukovRussian Federation
Valery S. Matyukov, PhD in Biology, leading researcher, the Laboratory of Genomics
27, st. Rucheinaya, Syktyvkar, Komi Republic, 167023
V. G. Zainullin
Russian Federation
Vladimir G. Zainullin, leading researcher, the Laboratory of Genetics
27, st. Rucheinaya, Syktyvkar, Komi Republic, 167023
References
1. Mueller J. C. Linkage disequilibrium for different scales and applications. Briefings in Bioinformatics. 2004;5(4):355-364. DOI: https://doi.org/10.1093/bib/5.4.355
2. Qanbari S., Rubin C.-J., Maqbool K., Weigend S., Weigend A., Geibel J. et al. Genetics of adaptation in modern chicken. PloS Genet. 2019;15(4):e1007989. DOI: https://doi.org/10.1371/journal.pgen.1007989
3. Кленовицкий П. М., Багиров В. А., Марзанов Н. С., Зиновьева Н. А. Генные карты сельскохозяйственных животных. Дубровицы, 2003. 58 с. Klenovitskiy P. M., Bagirov V. A., Marzanov N. S., Zinov'eva N. A. Gennye karty sel'skokhozyaystvennykh zhivotnykh. [Gene maps of farm animals]. Dubrovitsy, 2003. 58 p.
4. Матюков В. С. Селекционный статус полиморфизма β-казеина у крупного рогатого скота. Сельскохозяйственная биология. 1983;18(2):73-78. Matyukov V. S. Selektsionnyy status polimorfizma β-kazeina u krupnogo rogatogo skota. [Breeding status of β-casein polymorphism in cattle]. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 1983;18(2):73-78. (In Russ.).
5. Aschton C. C., Gilmour D. C., Kiddy C. A., Kristjansson P. K. Proposals on nomenrlature of protain polimorfisms in farm livestok. Genetics. 1967;56(3):353-362.
6. Kantanen J., Edwards C. J., Bradley D. G., Viinalass H., Thessler S., Ivanova Z., Kiselyova T., Cinkulov M., Popov R., Stojanovic S. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity. 2009;103(5):404-415. DOI: https://doi.org/10.1038/hdy.2009.68
7. Meng-Hua Li. Tapio I., Villkki J., Ivanova Z., Kiselyova T., Marzanov N., Ctnkulov M., Stojanovic S., Ammosov I., Popov R., Kantanen Ju. The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighbouring. Near Eastern regions: implications for breeding strategies and conservation. Molecular Ecology. 2007;16(18):3839-3853. DOI: https://doi.org/10.1111/j.1365-294X.2007.03437.x
8. Матюков В. С., Жариков Я. А., Миронов В. В. Методы современной селекции и сохранение генофонда молочного скота в Республике Коми. Сыктывкар, 2012. 156 с. Matyukov V. S., Zharikov Ya. A., Mironov V. V. Metody sovremennoy selektsii i sokhranenie genofonda molochnogo skota v Respublike Komi. [Methods of modern breeding and preservation of the gene pool of dairy cattle in the Komi Republic]. Syktyvkar, 2012. 156 p.
9. Hines H. C., Zikakis J. P., Haenlain G. F. W. Linkage relationship among loci of polymorphism in blood and milk of cattle. J. Dairy Sc. 1981;64(1):71-76.
10. Маринчук Г. Е. Сопряженность молочной продуктивности крупного рогатого скота с комплексом локусов сцепленного блока казеинов и β-лактоглобулина. Цитология и генетика. 1992;26(5):48-53. Marinchuk G. E. Sopryazhennost' molochnoy produktivnosti krupnogo rogatogo skota s kompleksom lokusov stseplennogo bloka kazeinov i β-laktoglobulina. [Conjugation of milk productivity of cattle with a complex of loci of a linked block of caseins and β-lactoglobulin]. Tsitologiya i genetika = Cytology and genetics. 1992;26(5):48-53. (In Ukraine).
11. Hayes B. J., Visscher P. M., McPartlan H. C., Goddard M. E. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003;13(4):635-643. DOI: https://doi.org/10.1101/gr.387103
12. Patil N., Berno A. J., Hinds D. A. Blocks of limited haplotype diversity revealed by highresolution scanning of human chromosome 21. Science. 2001;294(5547):1719-1723.
13. Melese L. Marker Assisted Selection in Comparison to Conventional Plant Breeding: Review Article. Agri Res & Tech: Open Access J. 2018;14(2):555914. DOI: https://doi.org/10.19080/ARTOAJ.2018.14.555914
14. Slatkin M. Linkage disequilibrium − understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008;9(6):477-485. DOI: https://doi.org/10.1038/nrg2361
15. Kantanen J., Løvendahl P., Strandberg E., Eythorsdottir E., Li M. H, Kettunen-Præbel A., Berg P., Meuwissen T. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries. Front Genet. 2015;6(2):52. DOI: https://doi.org/10.3389/fgene.2015.00052
16. Amaral A. J, Pavão A. L., Gama L. T. Genomic Tools for the Conservation and Genetic Improvement of a Highly Fragmented Breed-The Ramo Grande Cattle from the Azores. 2020;10(6):1089. DOI: https://doi.org/10.3390/ani10061089
17. Strandén I., Kantanen J., Russo I. M., Orozco-terWengel P., Bruford M. W. Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Climgen Consortium. Heredity (Edinb). 2019;123(3):307-317. DOI: https://doi.org/10.1038/s41437-019-0207-1
Review
For citations:
Matyukov V.S., Zainullin V.G. Disequilibrium linkage (gametic disequilibrium) of structural genes in the bovine population. Agricultural Science Euro-North-East. 2021;22(3):401-408. (In Russ.) https://doi.org/10.30766/2072-9081.2021.22.3.401-408