Состояние и перспективы использования растительного сырья в кормах для аквакультуры (обзор)
https://doi.org/10.30766/2072-9081.2022.23.3.281-294
Аннотация
Проблемой для предприятий аквакультуры является рост цен на традиционное сырье для приготовления кормов – рыбную муку и жир. Способом решения проблемы является их замена недорогими компонентами растительного происхождения. Целью исследования является обобщение и анализ научной информации по использованию в комбикормах для аквакультуры новых видов растительного сырья, технологиям их подготовки и применения, влиянию на качество корма. Выполнен отбор и систематический обзор научной литературы по теме исследования за период 2017-2022 гг. Основными видами растительного сырья для приготовления кормов в аквакультуре являются продукты переработки наземных сельскохозяйственных растений, такие как шроты масличных культур, белковые концентраты, глютен, отходы пищевой промышленности. Оптимальным вариантом для замены в рационах рыбьего жира в настоящее время являются растительные масла. Частичная или полная замена рыбной муки и жира новыми видами растительного сырья возможна и не приводит к ухудшению здоровья рыб и скорости их роста при включении этих компонентов в рацион в рекомендованных дозах. Такая замена является экономически выгодной. Но при применении растительного сырья есть и отрицательные эффекты, такие как наличие антипитательных факторов, ограничивающие его использование в аквакультуре. Разработка рецептов экономически эффективных кормов для рыб, в которых рыбная мука и жир полностью заменены растительными компонентами, является приоритетным направлением исследований, направленных на развитие интенсивной аквакультуры.
Об авторах
В. И. ПахомовРоссия
Пахомов Виктор Иванович, доктор техн. наук, и.о. директора, ФГБНУ «Аграрный научный центр «Донской»; зав. кафедрой «Технологии и оборудование переработки продукции АПК», ФГБОУ ВО «Донской государственный технический университет»
ул. Ленина 14, г. Зерноград, Ростовская область, 347740
пл. Гагарина 1, г. Ростов-на-Дону, 344010
В. Ф. Хлыстунов
Россия
Хлыстунов Виктор Федорович, доктор техн. наук, ученый секретарь по механизации и электрификации
ул. Ленина 14, г. Зерноград, Ростовская область, 347740
С. В. Брагинец
Россия
Брагинец Сергей Валерьевич, кандидат техн. наук, ведущий научный сотрудник отдела переработки продукции растениеводства, ФГБНУ «Аграрный научный центр «Донской»; доцент кафедры «Проектирование и технический сервис транспортно-технологических систем», ФГБОУ ВО «Донской государственный технический университет»
ул. Ленина 14, г. Зерноград, Ростовская область, 347740
пл. Гагарина 1, г. Ростов-на-Дону, 344010
О. Н. Бахчевников
Россия
Бахчевников Олег Николаевич, кандидат техн. наук, старший научный сотрудник отдела переработки продукции растениеводства
ул. Ленина 14, г. Зерноград, Ростовская область, 347740
Список литературы
1. Salin K. R., Arun V. V., Mohanakumaran Nair C., Tidwell J. H. Sustainable aquafeed. In: Hai F., Visvanathan C., Boopathy R. (eds) Sustainable Aquaculture. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. 2018. pp. 123-151. DOI: https://doi.org/10.1007/978-3-319-73257-2_4
2. Yue K., Shen Y. An overview of disruptive technologies for aquaculture. Aquaculture and Fisheries. 2022;7(2):111-120. DOI: https://doi.org/10.1016/j.aaf.2021.04.009
3. Kim S. W., Less J. F., Wang L., Yan T., Kiron V., Kaushik S. J., Lei X. G. Meeting global feed protein demand: challenge, opportunity, and strategy. Annual Review of Animal Biosciences. 2019;7(1):221-243. DOI: https://doi.org/10.1146/annurev-animal-030117-014838
4. Revesz N., Biro J. Recent trends in fish feed ingredients – mini review. Acta Agraria Kaposváriensis. 2019;23(1):32-47. DOI: https://doi.org/10.31914/aak.2286
5. Olsen R. L., Hasan M. R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends in Food Science & Technology. 2012;27(2):120-128. DOI: https://doi.org/10.1016/j.tifs.2012.06.003
6. Hodar A. R., Vasava R. J., Mahavadiya D. R., Joshi N. H. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. Journal of Experimental Zoology India. 2020;23(1):13-21. URL: https://vk.cc/cbMKaC
7. Singh P., Paul B. N., Giri S. S. Potentiality of new feed ingredients for aquaculture: A review. Agricultural Reviews. 2018;39(4):282-291. DOI: https://doi.org/10.18805/ag.r-1819
8. Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caruso G. Fishmeal alternative protein sources for aquaculture feeds. In: Feeds for the Aquaculture Sector. SpringerBriefs in Molecular Science. Springer, Cham. 2018. pp. 1-28. DOI: https://doi.org/10.1007/978-3-319-77941-6_1
9. Torraco R. J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review. 2016;15(4):404-428. DOI: https://doi.org/10.1177/1534484316671606
10. Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems. 2015;37:879-910. DOI: https://doi.org/10.17705/1cais.03743
11. Hua K., Cobcroft J. M., Cole A., Condon K., Jerry D. R., Mangott A., Strugnell J. M. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth. 2019;1(3):316-329. DOI: https://doi.org/10.1016/j.oneear.2019.10.018
12. Nasopoulou C., Zabetakis I. Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT. 2012;47(2):217-224. DOI: https://doi.org/10.1016/j.lwt.2012.01.018
13. Øverland M., Sørensen M., Storebakken T., Penn M., Krogdahl A., Skrede A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar) - Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 2009;288(3-4):305-311. DOI: https://doi.org/10.1016/j.aquaculture.2008.12.012
14. Jia S., Li X., He W., Wu G. Protein-sourced feedstuffs for aquatic animals in nutrition research and aquaculture. In: Wu G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. 2022. pp. 237-261. DOI: https://doi.org/10.1007/978-3-030-85686-1_12
15. Liu X., Han B., Xu J., Zhu J., Hu J., Wan W., Miao S. Replacement of fishmeal with soybean meal affects the growth performance, digestive enzymes, intestinal microbiota and immunity of Carassius auratus gibelio ×Cyprinus carpio. Aquaculture Reports. 2020;18:100472. DOI: https://doi.org/10.1016/j.aqrep.2020.100472
16. Carter C., Hauler R. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmosalar L. Aquaculture. 2000;185(3-4):299-311. DOI: https://doi.org/10.1016/S0044-8486(99)00353-1
17. Zhang C., Rahimnejad S., Wang Y., Lu K., Song K., Wang L., Mai K. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture. 2018;483:173-182. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.029
18. Krogdahl A., Gajardo K., Kortner T. M., Penn M., Gu M., Berge G. M., Bakke A. M. Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). Journal of Agricultural and Food Chemistry. 2015;63:3887-3902. DOI: https://doi.org/10.1021/jf506242t
19. Emre N., Güroy D., Yalım F. B., Emre Y., Güroy B., Mantoğlu S., Karadal O. Growth performance, body composition, haematological and serum parameters to fish meal replacement by soybean meal and cottonseed meal in Russian Sturgeon (Acipenser gueldenstaedtii). LIMNOFISH - Journal of Limnology and Freshwater Fisheries Research. 2018;4(3):169-176. DOI: https://doi.org/10.17216/LimnoFish.460773
20. Rinchard J., Mbahinzireki G., Dabrowski K., Lee K.-J., Garcia-Abiado M.-A., Ottobre J. Effects of dietary cottonseed meal protein level on growth, gonad development and plasma sex steroid hormones of tropical fish tilapia Oreochromis sp. Aquaculture International. 2002;10(1):11-28. DOI: https://doi.org/10.1023/A:1021379328778
21. Yildirim M., Lim C., Wan P. J., Klesius P. H. Growth performance and immune response of channel catfish (Ictalurus puctatus) fed diets containing graded levels of gossypol-acetic acid. Aquaculture. 2003;219(1-4):751-768. DOI: https://doi.org/10.1016/S0044-8486(03)00062-0
22. Cheng Z. J., Hardy R. W. Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2002;212(1-4):361-372. DOI: https://doi.org/10.1016/S0044-8486(02)00260-0
23. Wu F., Tian J., Yu L., Wen H., Jiang M., Lu X. Effects of dietary rapeseed meal levels on growth performance, biochemical indices and flesh quality of juvenile genetically improved farmed tilapia. Aquaculture Reports. 2021;20:100679. DOI: https://doi.org/10.1016/j.aqrep.2021.100679
24. Sallam E. A., Matter A. F., Mohammed L. S., Azam A. E., Shehab A., Mohamed Soliman M. Replacing fish meal with rapeseed meal: potential impact on the growth performance, profitability measures, serum biomarkers, antioxidant status, intestinal morphometric analysis, and water quality of Oreochromis niloticus and Sarotherodon galilaeus fingerlings. Veterinary Research Communications. 2021;45(4):223-241. DOI: https://doi.org/10.1007/s11259-021-09803-5
25. Mérida S. N., Tomás-Vidal A., Martínez-Llorens S., Cedrá M. J. Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: Amino acid retention, gut and liver histology. Aquaculture. 2010;298(3-4):275-281. DOI: https://doi.org/10.1016/j.aquaculture.2009.10.025
26. Christopher R. B., Ahilan B., Cheryl A., Samuel M. Sunflower meal as an alternative protein source to replace soybean meal in the diet of GIFT strain of Nile tilapia Oreochromis niloticus. Indian Journal of Fisheries. 2020;67(3):82-88. DOI: https://doi.org/10.21077/ijf.2020.67.3.91750-09
27. Rahmdel K. J., Noveirian H. A., Falahatkar B., Lashkan A. B. Effects of replacing fish meal with sunflower meal on growth performance, body composition, hematological and biochemical indices of common carp (Cyprinus carpio) fingerlings. Fisheries & Aquatic Life. 2018;26(2):121-129. DOI: https://doi.org/10.2478/aopf-2018-0013
28. Бектурсунова М. Ж., Жиенбаева С. Т., Сидорова В. И., Январева Н. И. Разработка технологии производства стартовых экструдированных кормов для молод и рыб. Вестник Алматинского технологического университета. 2021;(4):10-16. DOI: https://doi.org/10.48184/2304-568X-2021-4-10-16
29. Marroquín-Cardona A. G., Johnson N. M., Phillips T. D., Hayes A. W. Mycotoxins in a changing global environment - A review. Food and Chemical Toxicology. 2014;69:220-230. DOI: https://doi.org/10.1016/j.fct.2014.04.025
30. Acar Ü., Türker A. The effects of using peanut meal in rainbow trout (Oncorhynchus mykiss) diets on the growth performance and some blood parameters. Aquaculture Studies. 2018;18(2):79-87. DOI: http://doi.org/10.4194/2618-6381-v18_2_02
31. Dawood M. A., Koshio S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture. 2020;12(2):987-1002. DOI: http://doi.org/10.1111/raq.12368
32. Mukherjee R., Chakraborty R., Dutta A. Role of fermentation in improving nutritional quality of soybean meal –a review. Asian-Australasian Journal of Animal Sciences. 2016;29(11):1523. DOI: https://doi.org/10.5713/ajas.15.0627
33. Yang H., Bian Y., Huang L., Lan Q., Ma L., Li X., Leng X. Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides). Aquaculture Reports. 2022;22:100954. DOI: https://doi.org/10.1016/j.aqrep.2021.100954
34. Hekmatpour F., Mozanzadeh M. T. Legumes, Sustainable Alternative Protein Sources for Aquafeeds. In: D. J. Carlos, D. A. Clemente (Eds.) Legumes. London: IntechOpen, 2021. DOI: https://doi.org/10.5772/intechopen.99778
35. Li P., Wu G. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids. 2020;52:523-542. DOI: https://doi.org/10.1007/s00726-020-02833-4
36. Storebakken T., Shearer K. D., Roem A. J. Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein. Aquaculture Nutrition. 2000;6(2):103-108. DOI: https://doi.org/10.1046/j.1365-2095.2000.00135.x
37. Refstie S., Storebakken T., Baeverfjord G., Roem A. J. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture. 2001;193(1-2):91-106. DOI: https://doi.org/10.1016/S0044-8486(00)00473-7
38. Zhang J., Zhong L., Peng M., Chu W., Liu Z., Dai Z., Hu Y. Replacement of fish meal with soy protein concentrate in diet of juvenile rice field eel Monopterus albus. Aquaculture Reports. 2019;15:100235. DOI: https://doi.org/10.1016/j.aqrep.2019.100235
39. Mohd Faudzi N., Yong A. S. K., Shapawi R., Senoo S., Biswas A., Takii K. Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown‐marbled grouper (Epinephelus fuscoguttatus) × giant grouper (E. lanceolatus) juvenile. Aquaculture Research. 2018;49(1):431-441. DOI: https://doi.org/10.1111/are.13474
40. Willora F. P., Nadanasabesan N., Knutsen H. R., Liu C., Sørensen M., Hagen Ø. Growth performance, fast muscle development and chemical composition of juvenile lumpfish (Cyclopterus lumpus) fed diets incorporating soy and pea protein concentrates. Aquaculture Reports. 2020;17:100352. DOI: https://doi.org/10.1016/j.aqrep.2020.100352
41. Ye G., Dong X., Yang Q., Chi S., Liu H., Zhang H., Tan B., Zhang S. Low-gossypol cottonseed protein concentrate used as a replacement of fish meal for juvenile hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus): Effects on growth performance, immune responses and intestinal microbiota. Aquaculture. 2020;524:735309. DOI: https://doi.org/10.1016/j.aquaculture.2020.735309
42. Glencross B., Evans D., Dods K., McCafferty P., Hawkins W., Maas R. Evaluation of the digestible value of lupin and soybean protein concentrates and isolates when fed to rainbow trout, Oncorhynchus mykiss, using either stripping or settlement faecal collection methods. Aquaculture. 2005;245(1-4):211-20. DOI: https://doi.org/10.1016/j.aquaculture.2004.11.033
43. Muranova T. A., Zinchenko D. V., Miroshnikov A. I. Hydrolysates of soybean proteins for starter feeds of aquaculture: the behavior of proteins upon fermentolysis and the compositional analysis of hydrolysates. Russian Journal of Bioorganic Chemistry. 2019;45(3):195-203. DOI: https://doi.org/10.1134/S1068162019030038
44. Kaur V. I., Saxena P. K. Incorporation of maize gluten in supplementary feed and its impact on growth and flesh quality of some carps. Aquaculture International. 2005;13:555-573. DOI: https://doi.org/10.1007/s10499-005-7995-4
45. Glencross B., Grobler T., Huyben D. Digestible nutrient and energy values of corn and wheat glutens fed to Atlantic salmon (Salmo salar) are affected by feed processing method. Aquaculture. 2021;544:737133. DOI: https://doi.org/10.1016/j.aquaculture.2021.737133
46. Zaretabar A., Ouraji H., Kenari A. A., Yeganeh S., Esmaeili M., Amirkolaee A. K. One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius). Aquaculture Reports. 2021:20:100714. DOI: https://doi.org/10.1016/j.aqrep.2021.100714
47. Rodiles A., Herrera M., Hachero‐Cruzado I., Ruiz‐Jarabo I., Mancera J. M., Cordero M. L., Lall S. P., Alarcón F. J. Tissue composition, blood biochemistry and histology of digestive organs in Senegalese sole (Solea senegalensis) juveniles fed diets containing different plant protein ingredients. Aquaculture Nutrition. 2015;21(6):767-779. DOI: https://doi.org/10.1111/anu.12207
48. Alessio B., Parma L., Mandrioli L., Sirri R., Fontanillas R. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture. 2011;318(1-2):101-108. DOI: https://doi.org/10.1016/j.aquaculture.2011.05.003
49. Gaweł E., Grzelak M. The effect of a protein-xanthophyll concentrate from alfalfa (phytobiotic) on animal production – A current review. Annals of Animal Science. 2012;12:281-289. DOI: https://doi.org/10.2478/v10220-012-0023-5
50. Coburn J., Wells M. S., Phelps N. B., Gaylord T. G., Samac D. A. Acceptance of a Protein Concentrate from Alfalfa (Medicago sativa) by Yellow Perch (Perca flavescens) Fed a Formulated Diet. Fishes. 2021;6(2):9. DOI: https://doi.org/10.3390/fishes6020009
51. Rechulicz J., Ognik K., Grela E. R. The effect of adding protein-xanthophylls concentrate (PX) from lucerne (Medicago sativa) on growth parameters and redox profile in muscles of carp, Cyprinus carpio (L.). Turkish Journal of Fisheries and Aquatic Sciences. 2014;14:697-703. DOI: https://doi.org/10.4194/1303-2712-v14_3_12
52. Olvera-Novoa M. A., Campos S. G., Sabido M. G., Palacios C. A. M. The use of alfalfa leaf protein concentrates as a protein source in diets for tilapia (Oreochromis mossambicus). Aquaculture. 1990;90(3-4):291-302. DOI: https://doi.org/10.1016/0044-8486(90)90253-J
53. Halbos D. M., Mohammed M. J., Alhamadani A. S. The effect of adding dried alfalfa powder to the diet on some growth parameters of common carp (Cyprinus carpio L.). Annals of the Romanian Society for Cell Biology. 2021;25(2):352-358. URL: https://annalsofrscb.ro/index.php/journal/article/download/956/806
54. Gyan W., Li X., He S., Lin H., Yang Q., Tan B., Dong X., Chi Sh., Liu H., Zhang Sh. A review on the use of dried distiller’s grains with solubles (DDGS) in aquaculture feeds. Annals of Animal Science. 2022;22(1)21-42. DOI: https://doi.org/10.2478/aoas-2021-0041
55. Li E., Lim C., Klesius P., Cai C. Enhancement effects of dietary wheat distiller’s dried grains with solubles on growth, immunity, and resistance to Edwardsiella ictaluri challenge of channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society. 2012;43(6):814-827. DOI: https://doi.org/10.1111/j.1749-7345.2012.00605.x
56. Oliveira K. R., Segura J. G., Oliveira B. A., Medeiros A. C. L., Zimba R. D., Viegas E. M. Distillers' dried grains with soluble in diets for Pacu, Piaractus mesopotamicus juveniles: Growth performance, feed utilization, economic viability, and phosphorus release. Animal Feed Science and Technology. 2020;262:114393. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114393
57. Lim C., Yildirim‐Aksoy M., Klesius P. H. Growth response and resistance to Edwardsiella ictaluri of channel catfish, Ictalurus punctatus, fed diets containing distiller’s dried grains with solubles. Journal of the World Aquaculture Society. 2009;40(2):182-193. DOI: https://doi.org/10.1111/j.1749-7345.2009.00241.x
58. Li M. H., Robinson E. H., Oberle D. F., Lucas P. M. Effects of various corn distillers by‐products on growth, feed efficiency, and body composition of channel catfish, Ictalurus punctatus. Aquaculture Nutrition. 2010;16(2):188-193. DOI: https://doi.org/10.1111/j.1365-2095.2009.00650.x
59. Li M. H., Robinson E. H., Oberle D. F., Zimba P. V. Effects of various dietary carotenoid pigments on fillet appearance and pigment absorption in channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society. 2007;38(4):557-563. DOI: https://doi.org/10.1111/j.1749-7345.2007.00130.x
60. Archit Sh., Munish K., Gyandeep G., Neeraj P., Varun M. A review on replacing fish meal in aqua feeds using plant and animal protein sources. International Journal of Chemical Studies. 2019;7(3):4732-4739. URL: https://vk.cc/cbOujz
61. Kaur V. I., Saxena P. K. Incorporation of brewery waste in supplementary feed and its impact on growth in some carps. Bioresource Technology. 2004;91(1):101-104. DOI: https://doi.org/10.1016/S0960-8524(03)00073-7
62. San Martin D., Orive M., Iñarra B., Castelo J., Estévez A., Nazzaro J., Iloro I., Elortza F., Zufía J. Brewers’ spent yeast and grain protein hydrolysates as second-generation feedstuff for aquaculture feed. Waste and Biomass Valorization. 2020;11(10):5307-5320. DOI: https://doi.org/10.1007/s12649-020-01145-8
63. Estévez A., Padrell L., Iñarra B., Orive M., San Martin D. Brewery by-products (yeast and spent grain) as protein sources in gilthead seabream (Sparus aurata) feeds. Aquaculture. 2021;543:736921. DOI: https://doi.org/10.1016/j.aquaculture.2021.736921
64. Singh R., Dhawan A., Saxena P. K. Potential of press mud – a sugar factory byproduct – in supplementary diets and its impact on fish growth. Bioresource Technology. 1999;67(1):61-64. DOI: https://doi.org/10.1016/S0960-8524(99)00067-X
65. Sharma N., Hassan S. S., Ansal M. D. Incorporation of press mud: A sugar factory byproduct in semi-intensive carp polyculture system and its effect on fish growth and survival. Journal of Entomology and Zoology Studies. 2019;7(4):192-199. URL: https://www.entomoljournal.com/archives/2019/vol7issue4/PartD/7-3-321-512.pdf
66. Fountoulaki E., Vasilaki A., Hurtado R., Grigorakis K., Karacostas I., Nengas I., Ringos G., Kotzamanis Y., Venon B., Alexis M. N. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effect on growth performance, flesh quality and fillet fatty acid profile. Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperature. Aquaculture. 2009;289(3-4):317-326. DOI: https://doi.org/10.1016/j.aquaculture.2009.01.023
67. Wassef E. A., Saleh N. E., El-Hady H. A. E. Vegetable oil blend as alternative lipid resources in diets for gilthead seabream, Sparus aurata. Aquaculture International. 2009;17(5):421-435. DOI: https://doi.org/10.1007/s10499-008-9213-7
68. Petropoulos I. K., Thompson K. D., Morgan A., Dick J. R., Tocher D. R., Bell J. G. Effects of substitution of dietary fish oil with a blend of vegetable oils on liver and peripheral blood leukocyte fatty acid composition, plasma prostaglandin E2 and immune parameters in three strains of Atlantic salmon (Salmo salar). Aquaculture Nutrition. 2009;15(6):596-607. DOI: https://doi.org/10.1111/j.1365-2095.2008.00627.x
69. Harshavardhan M. A., Aanand S., Kumar J. S. S., Senthilkumar V. Comparative evaluation of commercial vegetable oil, fish oil, palm oil and groundnut oil as a lipid source in maturation and reproductive performance of fancy koi, Cyprinus carpio var. koi. Aquaculture. 2021;545:737248. DOI: https://doi.org/10.1016/j.aquaculture.2021.737248
70. Mourente G., Good J. E., Bel J. G. Partial substitution of ûsh oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on ûesh fatty acid composition, plasma prostaglandins E2 and E2a immune function and effectiveness of a fish oil finishing diet. Aquaculture Nutrition. 2005;11(1):25-40. DOI: https://doi.org/10.1111/j.1365-2095.2004.00320.x
71. Alhazzaa R., Nichols P. D., Carter C. G. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Reviews in Aquaculture. 2019;11(4):1195-1218. DOI: https://doi.org/10.1111/raq.12287
72. Hazreen-Nita M. K., Kari Z. A., Mat K., Rusli N. D., Sukri S. A. M., Harun H. C., Dawood M. A. Olive oil by-products in aquafeeds: Opportunities and challenges. Aquaculture Reports. 2022;22:100998. DOI: https://doi.org/10.1016/j.aqrep.2021.100998
73. Ayisi C. L., Zhao J. L. Recent developments in the use of palm oil in aquaculture feeds: a review. International Journal of Scientific & Technology Research. 2014;3(6):259-264. URL: https://vk.cc/cbUL8H
74. Larbi Ayisi C., Zhao J., Wu J. W. Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PloS one. 2018;13(4):e0196100. DOI: https://doi.org/10.1371/journal.pone.0196100
75. Glencross B. D., Baily J., Berntssen M. H., Hardy R., MacKenzie S., Tocher D. R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Reviews in Aquaculture. 2020;12(2):703-758. DOI: https://doi.org/10.1111/raq.12347
76. Daniel N. A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies. 2018;6(2):164-179. URL: https://www.fisheriesjournal.com/archives/2018/vol6issue2/PartC/6-1-35-823.pdf
77. Bandara T. Alternative feed ingredients in aquaculture: Opportunities and challenges. Journal of Entomology and Zoology Studies. 2018;6(2):3087-3094. URL: https://www.entomoljournal.com/archives/2018/vol6issue2/PartAJ/6-1-130-287.pdf
78. Drew M. D., Borgeson T. L., Thiessen D. L. A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology. 2007;138(2):118-136. DOI: https://doi.org/10.1016/j.anifeedsci.2007.06.019
79. Alam M. S., Kaur J., Khaira H., Gupta K. Extrusion and Extruded Products: Changes in quality attributes as affected by extrusion process parameters: a review. Critical Reviews in Food Science and Nutrition. 2016;56(3):445-473. DOI: https://doi.org/10.1080/10408398.2013.779568
80. Vielma J., Mäkinen T., Ekholm P., Koskela J. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture. 2000;183(3-4):349-362. DOI: https://doi.org/10.1016/S0044-8486(99)00299-9
81. Abdallah M. F., Girgin G., Baydar T. Occurrence, prevention and limitation of mycotoxins in feeds. Animal Nutrition and Feed Technology. 2015;15(3):471-490. DOI: https://doi.org/10.5958/0974-181x.2015.00048.7
Рецензия
Для цитирования:
Пахомов В.И., Хлыстунов В.Ф., Брагинец С.В., Бахчевников О.Н. Состояние и перспективы использования растительного сырья в кормах для аквакультуры (обзор). Аграрная наука Евро-Северо-Востока. 2022;23(3):281-294. https://doi.org/10.30766/2072-9081.2022.23.3.281-294
For citation:
Pakhomov V.I., Khlystunov V.F., Braginets S.V., Bakhchevnikov O.N. Current state and trends of the use of vegetable feedstock in aquaculture feeds (review). Agricultural Science Euro-North-East. 2022;23(3):281-294. https://doi.org/10.30766/2072-9081.2022.23.3.281-294