Preview

Agricultural Science Euro-North-East

Advanced search

Actinobiota of Rhaponticum carthamoides (Willd.) Iljin roots as potential source of microbiological preparations for cropping

https://doi.org/10.30766/2072-9081.2022.23.4.515-526

Abstract

The paper determines the number and structure of actinomycete complexes associated with the roots of the medicinal plant – leuzea safflower (Rhaponticum carthamoides (Willd.) Iljin) during long-term cultivation on sod-podzolic soil. The total number of actinomycetes in the rhizosphere varied within (4.4-13.2)×105 CFU/g of soil, and in the rhizoplane ‒ within (7.6-24.1)×103 CFU/g of roots. The complex of mycelial prokaryotes is represented by the genera Streptomyces, Micromonospora, Streptosporangium, Streptoverticillium and oligospore forms. Streptomycetes dominated both in the rhizosphere and in the rhizoplane of leuzea safflower. From these microlocuses, 30 cultures of mycelial prokaryotes were isolated using selective techniques. The cultural-morphological and physiological-biochemical properties of the isolates were studied. High-performance screening conducted using a dual reporter system revealed among 19 isolates associated with leuzea roots the ability to produce protein synthesis inhibitors in four (21 %) streptomycetes cultures. PCR detection of type II polyketide synthetase genes did not reveal their carriers among streptomycetes associated with leuzea. A significant proportion (67 %) of streptomycetes isolates from the rhizosphere and rhizoplana of leuzea had moderate and high cellulase activity. It has been established that the majority (92 %) of streptomycetes in the rhizoplana complex produce indole compounds (IUC) in the amount of 40±16.1 mcl/ml, up to 61 % of isolates produce water-soluble metabolites of antifungal action. New strains of streptomyces antagonists of phytopathogenic fungi, cellulolytics and auxin producers promising for further study have been identified. 

About the Authors

I. G. Shirokikh
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

DSc in Biological Science, chief researcher, Head of the Laboratory,

Lenin str., 166a, Kirov, 610007



Ya. I. Nazarova
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

PhD of Biological Science, researcher, 

Lenin str., 166a, Kirov, 610007



A. V. Bakulina
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

PhD in Biological Science, senior researcher, Head of the Laboratory of Molecular Biology and Breeding, 

Lenin str., 166a, Kirov, 610007



I. A. Osterman
Skolkovo Institute of Science and Technology; Sirius University, Scientific Center of Genetics and Life Sciences
Russian Federation

DSc in Chemistry, chief researcher, 30, p.1, Bolshoy Boulevard, Moscow, 121205;

leading researcher, 1, Olympic Avenue, Sirius village, Krasnodar Territory, 354349



A. R. Belik
Sirius University, Scientific Center of Genetics and Life Sciences
Russian Federation

1, Olympic Avenue, Sirius village, Krasnodar Territory, 354349



J. A. Buiuklian
Sirius University, Scientific Center of Genetics and Life Sciences
Russian Federation

1, Olympic Avenue, Sirius village, Krasnodar Territory, 354349



N. A. Bokov
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

Master's student, laboratory researcher, 

Lenin str., 166a, Kirov, 610007



A. A. Shirokikh
Federal Agricultural Research Center of the North-East named N. V. Rudnitsky
Russian Federation

DSc in Biological Science, 

Lenin str., 166a, Kirov, 610007



References

1. Hamedi J., Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. Journal of industrial microbiology & biotechnology. 2015;42(2);157-171. DOI: https://doi.org/10.1007/s10295-014-1537-x

2. Schmidt T. M. Encyclopedia of Microbiology. Academic Press, 2019. pp. 334-345. URL: https://books.google.ru/books?hl=ru&lr=&id=7fvDDwAAQBAJ&oi

3. Miliute O., Buzaite D., Baniulis V. Stanys Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture. 2015;102(4):465-478. DOI: https://doi.org/10.13080/za.2015.102.060

4. Wardecki T., Brötz E., De Ford C., von Loewenich F. D., Rebets Y., Tokovenko B., Merfort I. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie van Leeuwenhoek. 2015;108(2);391-402. DOI: https://doi.org/10.1007/s10482-015-0492-5

5. Nalini M. S., Prakash H. S. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Letters in applied microbiology. 2017;64(4):261-270. DOI: https://doi.org/10.1111/lam.12718

6. Dochhil H., Dkhar M. S., Barman D. Seed germination enhancing activity of endophytic Streptomyces isolated from indigenous ethno-medicinal plant Centella asiatica. Int J Pharm Biol Sci. 2013;4(1):256-262.

7. Igarashi Y. Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetolog. 2004;18:63-66. DOI: https://doi.org/10.3209/saj.18_63

8. El-Shatoury S., El-Kraly O., El-Kazzaz W., Dewedar A. Antimicrobial activities of Actinomycetes inhabiting Achillea fragrantissima (Family: Compositae). Egypt J Nat Toxins. 2009;6(2):1-15. URL: https://www.academia.edu/894923/ANTIMICROBIAL_ACTIVITIES_OF_ACTINOMYCETES_INHABITING_ACHILL EA_FRAGRANTISSIMA_FAMILY_COMPOSITAE_

9. Gangwar M., Dogra S., Gupta U. P., Kharwar R. N. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African J Microbiol Res. 2014;8(2):184-191. DOI: https://doi.org/10.5897/AJMR2012.2452

10. Timofeev N. P. Leuzea carthamoides: introduction questions and application prospects as biologically active components. Netraditsionnye prirodnye resursy, innovatsionnye tekhnologii i produkty. Moscow: RAEN, 2001. pp. 108-134. URL: https://www.elibrary.ru/item.asp?id=30640821&pff=1

11. Belodubrovskaya G. A. Big encyclopedic dictionary of medicinal plants. Saint-Petersburg: SpetsLit, 2015. 759 p.

12. Shirokikh I.G., Nazarova Y.I., Ogorodnikova S.Yu., Baranova E.N. Changes in the structure of the rhizosphere complexes of actinomycetes of transgenic tomato (Solanum lycopersicum L., SOLANACEAE, SOLANALES) with the gene Fe-SOD 1. Povolzhskiy ekologicheskiy zhurnal = Povolzhskiy Journal of Ecology. 2016;(3):341-351. (In Russ.). DOI: https://doi.org/10.18500/1684-7318-2016-3-341-351

13. Zenova G. M. Soil actinomycetes. Moscow: MGU, 1992. 78 p. URL: https://bookree.org/reader?file=1222199

14. Gauze G. F. Determinant of actinomycetes. Genera Sreptomyces, Streptoverticillium, Chainia. Moscow: Nauka, 1983. 248 p. URL: https://www.bookvoed.ru/files/3515/10/97/91.pdf

15. Osterman I. A., Komarova E. S., Shiryaev D. I., Korniltsev I. A., Khven I. M., Lukyanov D. A., Tashlitsky V. N., Serebryakova M. V., Efremenkova O. V., Ivanenkov Ya. A., Bogdanov A. A., Sergiev P. V., Dontsova O. A., Sorting Out Antibiotics’ Mechanisms of Action: a Double Fluorescent Protein Reporter for HighThroughput Screening of Ribosome and DNA Biosynthesis Inhibitors. Antimicrob Agents Chemother. 2016;60(12):7481-7489. DOI: https://doi.org/10.1128/AAC.02117-16

16. Libbert E., Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. Physiologia Plantarum. 1969;22(1):51-58. DOI: https://doi.org/10.1111/j.1399-3054.1969.tb07840.x

17. Teather R. M., Wood P. J. Use of congo-red polysaccharide interaction in erumeration and characterization of cellulolytic bacteria the bovine rumen. Appl. Environ Microbiol. 1982;43(4):777-780. DOI: https://doi.org/10.1128/aem.43.4.777-780.1982

18. Felnagle E. A., Jackson E. E., Chan Y. A., Podevels A. M., Berti A. D., McMahon M. D., Thomas M. G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 2008;5(2):191-211. DOI: https://doi.org/10.1021/mp700137g

19. Risdian C., Mozef T., Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms. 2019;7(5):124. DOI: https://doi.org/10.3390/microorganisms7050124

20. Bentley S. D., Chater K. F., Cerdeno-Tárraga A-M., Challis G. L., Thomson N. R. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002;417:141-147. DOI: https://doi.org/10.1038/417141a

21. Chiang Y-M., Chang S-L., Oakley B.R., Wang CCC. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol. 2011;15:137-143. DOI: https://doi.org/10.1016/j.cbpa.2010.10.011

22. Ayuso-Sacido A., Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol. 2005;49(1):10-24. DOI: https://doi.org/10.1007/s00248-004-0249-6

23. Hertweck C., Luzhetskyy A., Rebets Y., Bechthold A. Type II polyketide synthases: Gaining a deeperinsight into enzymatic teamwork. Nat. Prod. Rep. 2007;24:162-190. DOI: https://doi.org/10.1039/b507395m

24. Qin S., Li J., Chen H. H., Zhao G. Z., Zhu W. Y., Jiang C. L., Li W. J. Isolation, Diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. Appl. Environ. Microbiol. 2009;75(19):6176-6186. DOI: https://doi.org/10.1128/AEM.01034-09

25. Passari A. K., Mishra V. K., Saikia R., Gupta V. K., Singh B. P. Isolation, abundance and phylogenetic affiliation of endophytic actinobacteria associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol. 2015;6:273. DOI: https://doi.org/10.3389/fmicb.2015.00273

26. Veselova S. V., Nuzhnaya T. V., Burkhanova G. F., Rumyantsev S. D., Kasimova A. R., Maksimov I. V. The role of phythormones in regulation of interactions between plants and pathogens, pests and viruses. Ekobiotekh: mat-ly VII Vseross. konf. s mezhdunarod. uchastiem. Ufa: UIB UFITs RAN, 2021. pp. 124-128. URL: http://ib.anrb.ru/ebt2021/ecobiotech2021.pdf


Review

For citations:


Shirokikh I.G., Nazarova Ya.I., Bakulina A.V., Osterman I.A., Belik A.R., Buiuklian J.A., Bokov N.A., Shirokikh A.A. Actinobiota of Rhaponticum carthamoides (Willd.) Iljin roots as potential source of microbiological preparations for cropping. Agricultural Science Euro-North-East. 2022;23(4):515-526. (In Russ.) https://doi.org/10.30766/2072-9081.2022.23.4.515-526

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)