Актинобиота корней Rhapоnticum carthamoides (Willd.) Iljin как потенциальный источник микробиологических препаратов для растениеводства
https://doi.org/10.30766/2072-9081.2022.23.4.515-526
Аннотация
В работе определена численность и структура комплексов актиномицетов, ассоциированных с корнями лекарственного растения – левзеи сафлоровидной (Rhapоnticum carthamoides (Willd.) Iljin) при длительном возделывании на дерново-подзолистой почве. Общая численность актиномицетов в ризосфере изменялась в пределах (4,4-13,2)×105 КОЕ/г почвы, а в ризоплане ‒ в пределах (7,6-24,1)×103 КОЕ/г корней. Комплекс мицелиальных прокариот представлен родами Streptomyces, Micromonospora, Streptosporangium, Streptoverticillium и олигоспоровыми формами. Стрептомицеты доминировали как в ризосфере, так и в ризоплане левзеи сафлоровидной. Из этих микролокусов c помощью селективных приемов выделено 30 культур мицелиальных прокариот. Исследованы культурально-морфологические и физиолого-биохимические свойства изолятов. Высокопроизводительный скрининг, проведенный с помощью двойной репортерной системы, выявил среди 19 изолятов, ассоциированных с корнями левзеи, способность продуцировать ингибиторы синтеза белка у четырех (21 %) культур стрептомицетов. ПЦР-детекция генов поликетидсинтетаз типа II не выявила среди ассоциированных с левзеей стрептомицетов их носителей. Значительная доля (67 %) изолятов стрептомицетов из ризосферы и ризопланы левзеи обладала умеренной и высокой целлюлазной активностью. Установлено, что большинство (92 %) стрептомицетов в комплексе ризопланы продуцируют индольные соединения (ИУК) в количестве 40±16,1 мкл/мл, до 61 % изолятов способны к синтезу водорастворимых метаболитов антифунгального действия. Выявлены новые перспективные для дальнейшего изучения штаммы стрептомицетов-антагонистов фитопатогенных грибов, целлюлолитиков и продуцентов ауксинов.
Ключевые слова
Об авторах
И. Г. ШирокихРоссия
доктор биологических наук, главный научный сотрудник, зав. лабораторией,
д. 166а, ул. Ленина, г. Киров, 610007
irgenal@mail.ru
Я. И. Назарова
Россия
кандидат биологических наук, научный сотрудник,
д. 166а, ул. Ленина, г. Киров, 610007
А. В. Бакулина
Россия
кандидат биол. наук, старший научный сотрудник, зав. лабораторией молекулярной биологии и селекции,
ул. Ленина 166а, г. Киров, 610007
И. А. Остерман
Россия
доктор химических наук, главный научный сотрудник, д.30, стр.1, Большой бульвар, г. Москва, 121205;
ведущий научный сотрудник, д. 1, пр-кт Олимпийский, пгт Сириус, Краснодарский край, 354349
А. Р. Белик
Россия
д. 1, пр-кт Олимпийский, пгт Сириус, Краснодарский край, 354349
Ю. А. Буюклян
Россия
д. 1, пр-кт Олимпийский, пгт Сириус, Краснодарский край, 354349
Н. А. Боков
Россия
магистрант, лаборант-исследователь,
ул. Ленина 166а, г. Киров, 610007
А. А. Широких
Россия
доктор биологических наук, ведущий научный сотрудник,
д. 166а, ул. Ленина, г. Киров, 610007
Список литературы
1. Hamedi J., Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. Journal of industrial microbiology & biotechnology. 2015;42(2);157-171. DOI: https://doi.org/10.1007/s10295-014-1537-x
2. Schmidt T. M. Encyclopedia of Microbiology. Academic Press, 2019. pp. 334-345. URL: https://books.google.ru/books?hl=ru&lr=&id=7fvDDwAAQBAJ&oi
3. Miliute O., Buzaite D., Baniulis V. Stanys Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture. 2015;102(4):465-478. DOI: https://doi.org/10.13080/za.2015.102.060
4. Wardecki T., Brötz E., De Ford C., von Loewenich F. D., Rebets Y., Tokovenko B., Merfort I. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie van Leeuwenhoek. 2015;108(2);391-402. DOI: https://doi.org/10.1007/s10482-015-0492-5
5. Nalini M. S., Prakash H. S. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Letters in applied microbiology. 2017;64(4):261-270. DOI: https://doi.org/10.1111/lam.12718
6. Dochhil H., Dkhar M. S., Barman D. Seed germination enhancing activity of endophytic Streptomyces isolated from indigenous ethno-medicinal plant Centella asiatica. Int J Pharm Biol Sci. 2013;4(1):256-262.
7. Igarashi Y. Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetolog. 2004;18:63-66. DOI: https://doi.org/10.3209/saj.18_63
8. El-Shatoury S., El-Kraly O., El-Kazzaz W., Dewedar A. Antimicrobial activities of Actinomycetes inhabiting Achillea fragrantissima (Family: Compositae). Egypt J Nat Toxins. 2009;6(2):1-15. URL: https://www.academia.edu/894923/ANTIMICROBIAL_ACTIVITIES_OF_ACTINOMYCETES_INHABITING_ACHILL EA_FRAGRANTISSIMA_FAMILY_COMPOSITAE_
9. Gangwar M., Dogra S., Gupta U. P., Kharwar R. N. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African J Microbiol Res. 2014;8(2):184-191. DOI: https://doi.org/10.5897/AJMR2012.2452
10. Тимофеев Н. П. Левзея сафлоровидная: проблемы интродукции и перспективы использования в качестве биологически активных добавок. Нетрадиционные природные ресурсы, инновационные технологии и продукты. М.: РАЕН, 2001. С. 108-134. Режим доступа: https://www.elibrary.ru/item.asp?id=30640821&pff=1
11. Белодубровская Г. А. Большой энциклопедический словарь лекарственных растений. Санкт-Петербург: СпецЛит, 2015. 759 с.
12. Широких И. Г., Назарова Я. И., Огородникова С. Ю., Баранова Е. Н. Изменение структуры комплексов актиномицетов в ризосфере трансгенных по гену Fe-СОД 1 линий томата (Solanum lycopersicum L., SOLANACEAE, SOLANALES). Поволжский экологический журнал. 2016;(3):341-351. DOI: https://doi.org/10.18500/1684-7318-2016-3-341-351
13. Зенова Г. М. Почвенные актиномицеты. М.: МГУ, 1992. 78 с. Режим доступа: https://bookree.org/reader?file=1222199
14. Гаузе Г. Ф. Определитель актиномицетов. Роды Sreptomyces, Streptoverticillium, Chainia. М.: Наука, 1983. 248 с. Режим доступа: https://www.bookvoed.ru/files/3515/10/97/91.pdf
15. Osterman I. A., Komarova E. S., Shiryaev D. I., Korniltsev I. A., Khven I. M., Lukyanov D. A., Tashlitsky V. N., Serebryakova M. V., Efremenkova O. V., Ivanenkov Ya. A., Bogdanov A. A., Sergiev P. V., Dontsova O. A., Sorting Out Antibiotics’ Mechanisms of Action: a Double Fluorescent Protein Reporter for HighThroughput Screening of Ribosome and DNA Biosynthesis Inhibitors. Antimicrob Agents Chemother. 2016;60(12):7481-7489. DOI: https://doi.org/10.1128/AAC.02117-16
16. Libbert E., Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. Physiologia Plantarum. 1969;22(1):51-58. DOI: https://doi.org/10.1111/j.1399-3054.1969.tb07840.x
17. Teather R. M., Wood P. J. Use of congo-red polysaccharide interaction in erumeration and characterization of cellulolytic bacteria the bovine rumen. Appl. Environ Microbiol. 1982;43(4):777-780. DOI: https://doi.org/10.1128/aem.43.4.777-780.1982
18. Felnagle E. A., Jackson E. E., Chan Y. A., Podevels A. M., Berti A. D., McMahon M. D., Thomas M. G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 2008;5(2):191-211. DOI: https://doi.org/10.1021/mp700137g
19. Risdian C., Mozef T., Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms. 2019;7(5):124. DOI: https://doi.org/10.3390/microorganisms7050124
20. Bentley S. D., Chater K. F., Cerdeno-Tárraga A-M., Challis G. L., Thomson N. R. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002;417:141-147. DOI: https://doi.org/10.1038/417141a
21. Chiang Y-M., Chang S-L., Oakley B.R., Wang CCC. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol. 2011;15:137-143. DOI: https://doi.org/10.1016/j.cbpa.2010.10.011
22. Ayuso-Sacido A., Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol. 2005;49(1):10-24. DOI: https://doi.org/10.1007/s00248-004-0249-6
23. Hertweck C., Luzhetskyy A., Rebets Y., Bechthold A. Type II polyketide synthases: Gaining a deeperinsight into enzymatic teamwork. Nat. Prod. Rep. 2007;24:162-190. DOI: https://doi.org/10.1039/b507395m
24. Qin S., Li J., Chen H. H., Zhao G. Z., Zhu W. Y., Jiang C. L., Li W. J. Isolation, Diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. Appl. Environ. Microbiol. 2009;75(19):6176-6186. DOI: https://doi.org/10.1128/AEM.01034-09
25. Passari A. K., Mishra V. K., Saikia R., Gupta V. K., Singh B. P. Isolation, abundance and phylogenetic affiliation of endophytic actinobacteria associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol. 2015;6:273. DOI: https://doi.org/10.3389/fmicb.2015.00273
26. Веселова С. В., Нужная Т. В., Бурханова Г. Ф., Румянцев С. Д., Касимова А. Р., Максимов И. В. Роль фитогормонов в регуляции взаимодействий между растениями и патогенами, насекомымивредителями, вирусами. Экобиотех: мат-лы VII Всеросс. конф. с международ. участием. Уфа: УИБ УФИЦ РАН, 2021. С. 124-128. Режим доступа: http://ib.anrb.ru/ebt2021/ecobiotech2021.pdf
Рецензия
Для цитирования:
Широких И.Г., Назарова Я.И., Бакулина А.В., Остерман И.А., Белик А.Р., Буюклян Ю.А., Боков Н.А., Широких А.А. Актинобиота корней Rhapоnticum carthamoides (Willd.) Iljin как потенциальный источник микробиологических препаратов для растениеводства. Аграрная наука Евро-Северо-Востока. 2022;23(4):515-526. https://doi.org/10.30766/2072-9081.2022.23.4.515-526
For citation:
Shirokikh I.G., Nazarova Ya.I., Bakulina A.V., Osterman I.A., Belik A.R., Buiuklian J.A., Bokov N.A., Shirokikh A.A. Actinobiota of Rhaponticum carthamoides (Willd.) Iljin roots as potential source of microbiological preparations for cropping. Agricultural Science Euro-North-East. 2022;23(4):515-526. (In Russ.) https://doi.org/10.30766/2072-9081.2022.23.4.515-526