Preview

Agricultural Science Euro-North-East

Advanced search

Enzymative activity of technogenic surface formations of Kuzbass

https://doi.org/10.30766/2072-9081.2022.23.4.538-547

Abstract

The coal mining is one of the leading industries in the global energy balance. Kuzbass is the main region of Russia that specializes in coal mining. About 60 % of the country's coal is mined there. Coal mining is carried out mainly by the open-pit method. As a result, some 178 thousand hectares ha of disturbed land are formed. Enzymatic activity is an indicator of soil self-repair. The aim of the work was to study the enzymatic activity of technogenic surface formations of the Kuzbass to assess their toxicity and further selection of destructor microorganisms, rhizobacteria and hyperaccumulator plants, which will be further used at the biological stage of recultivation. As objects of research, the samples of technogenic surface formations taken on the territory of the Barzassky and Mokhovsky coal dumps. Enzymatic activity of technogenic surface formations of dumps was: invertase – 2,24 and 2,12 mg of sucrose split 1 g soil in 1 h; nitrite reductase – 0,57 and 0,07 mg reduced NO2- per 1 g soil in 24 h; asparaginase – 71,22 and 60,63 mg NH3 per 1 g soil in 24 h, respectively. When studying the enzymatic activity, it was assumed that the native microflora uses low- and high-molecular hydrocarbons (alkanes, polycyclic aromatic hydrocarbons (PAH), etc.) as carbon sources. The content of mobile forms of heavy metals (HM) in the studied samples exceeds the maximum allowable concentration by 1,2-2,6 times. In the course of statistical analysis, it was revealed that the gross and mobile forms of zinc and copper are nitrite reductase inhibitors, the gross and mobile form of nickel is an asparaginase activator, in technogenic disturbed formations of the studied coal dumps. Nickel is also an invertase inhibitor in the Mokhovsky coal dump. 

About the Authors

A. S. Frolova
Kemerovo State University
Russian Federation

junior researcher, the Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems,

Krasnaya str., 6, Kemerovo, 650000



M. K. Pereverzeva
Kemerovo State University
Russian Federation

junior researcher, the Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, 

Krasnaya str., 6, Kemerovo, 650000



L. K. Asyakina
Kemerovo State University
Russian Federation

PhD in Engineering, Head of the Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, 

Krasnaya str., 6, Kemerovo, 650000



Yu. V. Golubtsova
Kemerovo State University
Russian Federation

DSc in Engineering, vice-rector for the development of the property complex,

Krasnaya str., 6, Kemerovo, 650000



M. A. Osintseva
Kemerovo State University
Russian Federation

PhD in Engineering, Head of the Department of Project Activity,

Krasnaya str., 6, Kemerovo, 650000



References

1. Faskhutdinova E. R., Osintseva M. A., Neverova O. A. Prospects of Using Soil Microbiome of Mine Tips for Remediation of Anthropogenically Disturbed Ecosystems. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2021;51(4):883-904. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2021-4-883-904

2. Asyakina L. K., Dyshlyuk L. S., Prosekov A. Yu. Reclamation of Post-Technological Landscapes: International Experience. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2021;51(4):805-818. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2021-4-805-818

3. Fotina N. V., Emelianenko V. P., Vorob'eva E. E., Burova N. V., Ostapova E. V. Contemporary Biological Methods of Mine Reclamation in the Kemerovo Region – Kuzbass. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2021;51(4):869-882. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2021-4-869-882

4. Simonova O. A., Cheglakova O. A. Influence of fertilizers on content and dynamics of mobile forms of cupper and zink in sod-podzolic soil. Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2017;(6):30-34. (In Russ.). URL: https://www.agronauka-sv.ru/jour/article/view/172

5. Drozdova M. Yu., Pozdnyakova A. V., Osintseva M. A., Burova N. V., Minina V. I. The microorganism-plant system for remediation of soil exposed to coal mining. Foods and raw materials. 2021;9(2):406-418. DOI: http://doi.org/10.21603/2308-4057-2021-2-406-418

6. Myszura M., Zukowska G., Kobylka A., Mazurkiewicz J. Enzymatic activity of soils forming on an afforested heap from an opencast sulphur mine. Forests. 2021;12(11):1469. DOI: https://doi.org/10.3390/f12111469

7. Assemien F. L., Cantarel A. A., Florio A., Lerondelle C., Pommier T., Gonnety J. T., Roux X. L. Different groups of nitrite-reducers and N2O-reducers have distinct ecological niches and functional roles in West African cultivated soils. Soil Biology and Biochemistry. 2019;129:39-47. DOI: https://doi.org/10.1016/j.soilbio.2018.11.003

8. Fan L., Tarin M., Yangyang Z., Yongzhen H., Rong J., Xinhang C., Liguang C., Chengkun S., Yushan Z. Patterns of soil microorganisms and enzymatic activities of various forest types in coastal sandy land. Global Ecology and Conservation. 2021;28:e01625. DOI: https://doi.org/10.1016/j.gecco.2021.e01625

9. Sobat M., Asad S., Kabiri M., Mehrshad M. Metagenomic discovery and functional validation of L-asparaginases with anti-leukemic effect from the Caspian Sea. iScience. 2021;24(1):101973. DOI: https://doi.org/10.1016/j.isci.2020.101973

10. Yinping B., Feng L., Gang Y., Shengwei S., Faqin D., Mingxue L., Xiaoqin N., Jiangbo H. Meta-analysis of experimental warming on soil invertase and urease activities, Acta Agriculturae Scandinavica, Section B. Soil and Plant Science. 2018;68(2):104-109. DOI: https://doi.org/10.1080/09064710.2017.1375140

11. Meyer W., Seiler T.B., Schwarzbauer J., Püttmann W., Hollert H., Achten C. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank. Sci. Total Environ. 2014;494-495:320-328. DOI: https://doi.org/10.1016/j.scitotenv.2014.06.140

12. Mathew B., Singh H., Biju V., Beeregowda K. Classification, source and effect of environmental pollutants and it’s biodegradation. Journal of Environmental Pathology. Toxicology and Oncology. 2017;36(1):55-71. DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017015804

13. Sun X., Ye Y., Guan Q., Jones D. L. Organic mulching masks rhizosphere effects on carbon and nitrogen fractions and enzyme activities in urban greening space. J Soils Sediments. 2021;21:1621-1632. DOI: https://doi.org/10.1007/s11368-021-02900-7

14. Liu X., Wang J., Wu L., Zhang L., Si Y. Impacts of silver nanoparticles on enzymatic activities, nitrifying bacteria, and nitrogen transformation in soil amended with ammonium and nitrate. Pedosphere. 2021;31(6):934-943. DOI: https://doi.org/10.1016/s1002-0160(21)60036-x

15. El-Gendy M., Awad M., Shawky F., El-Bondkly A. Production, purification, characterization, antioxidant and antiproliferative activities of extracellular L-asparaginase produced by Fusariumequiseti AHMF4. Saudi Journal of Biological Sciences. 2021;28(4):2540-2548. DOI: https://doi.org/10.1016/j.sjbs.2021.01.058

16. Saadalov T., Myrzaibraimov R. M, Abdullaeva Zh. D. Calculating procedure for the correlation coefficient of Fechner and Pearson and their application areas. Bulletin of Science and Practice. 2021;7(10):270–276. (In Russ.). DOI: https://doi.org/10.33619/2414-2948/71

17. Tarasova N. P., Osipov K. Yu., Osipova N. A., Yazikov E. G. Heavy metals in soils affected by coal enterprises and their impact on human health. Bezopasnost' v tekhnosfere = Safety in Technosphere. 2015;4(2):16-26. (In Russ.). DOI: https://doi.org/10.12737/11329

18. Khmelev V. A., Tanasienko A. A. Soil resources of the kemerovo region and the basics of its rational use. Novosibirsk: Izd-vo SO RAN, 2013. 477 p.

19. Borah P., Gujre N., Rene E. R., Rangan L., Paul R. K., Karak T., Mitra S. Assessment of mobility and environmental risks associated with copper, manganese and zinc in soils of a dumping site around a Ramsar site. Chemosphere. 2020;254:126852. DOI: https://doi.org/10.1016/j.chemosphere.2020.126852

20. Sorokin A. E., Savich V. I., Yankova A. A. Agricultural and ecological assessment of soddy-podzolic soil on nickel content depending on pH environmental conditions and complex formation. Vladimirskiy zemledelets = Vladimir agricolist. 2020;1(91):22-26. (In Russ.). DOI: https://doi.org/10.24411/2225-2584-2020-10104

21. Natasha N., Shahid M., Bibi I., Iqbal J., Khalid S., Murtaza B., Bakha H. F., Farooq A. B. U., Amjad M., Hammad H. M., Niazi N. K., Arshad M. Zinc in soil-plant-human system: A data-analysis review. Science of The Total Environment. 2022;808:152024. DOI: https://doi.org/10.1016/j.scitotenv.2021.152024

22. Zhuravleva N. V., Ivanykina O. V., Ismagilov Z. R., Potokina R. R. The content of toxic elements in overburden and enclosing rocks of coal deposits of the Kemerovo region. Gornyy in-formatsionno-analiticheskiy byulleten' (nauchnotekhnicheskiy zhurnal) = Mining informational and analytical bulletin (scientific and technical journal). 2015;3:187-196. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=23028484

23. Angulo-Bejarano P. I., Puente-Rivera J., Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants. 2021;10(4):635-663. DOI: https://doi.org/10.3390/plants10040635

24. Hassan M., Chattha M., Khan I., Chattha M., Aamer M., Nawaz M., Ali A., Khan M., Khan T. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities – a review. Environmental Science and Pollution Research. 2019;26:12673-12688. DOI: https://doi.org/10.1007/s11356-019-04892-x

25. Küpper H., Andresen E. Mechanisms of metal toxicity in plants. Metallomics. 2016;8(3):269-285. DOI: https://doi.org/10.1039/c5mt00244c

26. Malhotra S., Mishra V., Karmakar S., Sharma R. S. Environmental predictors of indole acetic acid producing rhizobacteria at fly ash dumps: nature-based solution for sustainable restoration. Frontiers in Environmental Science. 2017;5:59-70. DOI: https://doi.org/10.3389/fenvs.2017.00059

27. Gao S., Xiao Y., Xu F., Gao X., Cao S., Zhang F., Wang G., Sanders D., Chu C. Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol. 2019;224(1):202-215. DOI: https://doi.org/10.1111/nph.15962

28. Ahmad P., Alyemeni M. N., Wijaya L., Alam P., Ahanger M. A., Alamri S. A. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 2017;63(13):1889-1899. DOI: https://doi.org/10.1080/03650340.2017.1313406

29. Salam M., Kaipiainen E., Mohsin M., Villa A., Kuittinen S., Pulkkinen P., Pelkonen P., Mehtätalo L., Pappinen A. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. Journal of Environmental Management. 2016;183(3):467-477. DOI: https://doi.org/10.1016/j.jenvman.2016.08.082

30. Ghazaryan K. A., Movsesyan H. S., Minkina T. M., Sushkova S. N., Rajput V. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environ. Geochem. Hlth. 2021;43:1327-1335. DOI: https://doi.org/10.1007/s10653-019-00338-y


Review

For citations:


Frolova A.S., Pereverzeva M.K., Asyakina L.K., Golubtsova Yu.V., Osintseva M.A. Enzymative activity of technogenic surface formations of Kuzbass. Agricultural Science Euro-North-East. 2022;23(4):538-547. (In Russ.) https://doi.org/10.30766/2072-9081.2022.23.4.538-547

Views: 322


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)