Pool of bile acids, its predictor functions and influence on the pathology of the hepatobiliary system (review)
https://doi.org/10.30766/2072-9081.2022.23.5.587-599
Abstract
The creation of a highly effective model for diagnosing liver diseases of various genesis (including subclinical forms) in animals is one of the most urgent problems of veterinary science. Currently, there is a need to create more specific than "classical" tests for a clear differentiation of various pathologies of the hepatobiliary system, including diseases characterized by the absence of pathognomonic clinical or laboratory signs. One of the extremely promising predictors of such pathologies is bile acids (BA) and their pool. The main goal of the study is to search and analyze information from scientific publications dedicated to the study of the BA’s pool in various animal species, its changes in various pathologies of the hepatobiliary system and its diagnostic value. In English and Russian, in accordance with the recommendations of H. Snyder, various bibliographic databases (Elibrary, Pubmed, Scopus (Elsevier), Web of Science (Clarivat)) were searched for thematic publications by keywords with further highlighting the most cited ones. Articles published before 2015 were used only if they contained information critical to the better understanding of the topic, or it was not found in later publications. Based on the literature analysis, it can be concluded that liver diseases affect the synthesis and metabolism of bile acids. Therefore, BAs separately and their pool are studied and utilized as diagnostic and prognostic markers. However, it is not yet clear how the etiology of liver diseases affects the composition of bile acids. It should also be noted that in different animals there are differences in the BA pool, as well as in the details of their metabolism. This indicates differences in the specificity, affinity, and activity of enzymes involved in BA synthesis. Thus, BAs also affect the etiopathogenesis of diseases of the hepatobiliary system differently for each animal species, and, conversely, etiopathogenetic factors change the pool of BAs depending on the individual characteristics of the species.
About the Authors
Yu. E. KuznetsovRussian Federation
DSc in Veterinary Science, associate professor, associate professor at the Department of Parasitology named after Yakimov V. L.
Chernihiv St., 5, Saint-Petersburg, 196084
A. M. Lunegov
Russian Federation
PhD in Veterinary Science, associate professor, Head of the Department of Pharmacology and Toxicology
Chernihiv St., 5, Saint-Petersburg, 196084
V. S. Ponamarev
Russian Federation
PhD in Veterinary Science, teaching assistant at the Department of Pharmacology and Toxicology
Chernihiv St., 5, Saint-Petersburg, 196084
E. B. Romashova
Russian Federation
post-graduate student at the Department of Parasitology named after Yakimov V. L.
Chernihiv St., 5, Saint-Petersburg, 196084
References
1. Winston J. A., Rivera A., Cai J., Patterson A. D., Theriot C. M. Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLoS One. 2021;16(2):e0246161. DOI: https://doi.org/10.1371/journal.pone.0246161
2. Kuznetsov Yu. E., Lunegov A. M., Ponamarev V. S., Romashova E. B. Bile acids as a diagnostic indicator of the state of homeostasis: a systematic descriptive analysis. Mezhdunarodnyy vestnik veterinarii = International Journal of Veterinary Medicine. 2022;(1):52-56. (In Russ.). DOI: https://doi.org/10.52419/issn2072-2419.2022.1.52
3. Li J., Dawson P. A. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):895-911. DOI: https://doi.org/10.1016/j.bbadis.2018.05.011
4. Washizu T., Tomoda I., Kaneko J. J. Serum bile acid composition of the dog, cow, horse and human. The Journal of Veterinary Medical Science. 1991;53(1):81-86. DOI: https://doi.org/10.1292/jvms.53.81
5. Watanabe M., Horai Y., Houten S. M., Morimoto K., Sugizaki T., Arita E., Mataki C., Sato H., Tanigawara Y., Schoonjans K., Itoh H., Auwerx J. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. The Journal of biological chemistry. 2011;286(30):26913-26920. DOI: https://doi.org/10.1074/jbc.M111.248203
6. Stroeve J. H., Brufau G., Stellaard F., Gonzalez F. J., Staels B., Kuipers F. Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest. 2010;90(10):1457-1467. DOI: https://doi.org/10.1038/labinvest.2010.107
7. Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., Messaddeq N., Harney J. W., Ezaki O., Kodama T., Schoonjans K., Bianco A. C., Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484-489. DOI: https://doi.org/10.1038/nature04330
8. Kakimoto T., Kanemoto H., Fukushima K., Ohno K., Tsujimoto H. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. American Journal of Veterinary Research. 2017;78(2):223-229. DOI: https://doi.org/10.2460/ajvr.78.2.223
9. Klinkspoor J. H., Kuver R., Savard C. E., Oda D., Azzouz H., Tytgat G. N. J., Groen A. K., Lee S. P. Model bile and bile salts accelerate mucin secretion by cultured dog gallbladder epithelial cells. Gastroenterology 1995;109:264-274. DOI: https://doi.org/10.1016/0016-5085(95)90293-7
10. Englert E., Harman C. G., Freston J. W., Straight R. C., Wales E. E. Studies on the pathogenesis of dietinduced dog gallstones. Am J Dig Dis 1977;22:305-314. DOI: https://doi.org/10.1007/BF01072187
11. Suga T., Yamaguchi H., Ogura J., Shoji S., Maekawa M., Mano N. Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicology and Applied Pharmacology. 2019;379:114664. DOI: https://doi.org/10.1016/j.taap.2019.114664
12. Blaschka C., Sánchez-Guijo A., Wudy S. A., Wrenzycki C. Profile of bile acid subspecies is similar in blood and follicular fluid of cattle. Vet Med Sci. 2020;6(2):167-176. DOI: https://doi.org/10.1002/vms3.217
13. Ponamarev V. S., Popova O. S. The effect of the drug «Hepaton» on the reaction of lipid peroxidation. Mezhdunarodnyy vestnik veterinarii = International Journal of Veterinary Medicine. 2020;(2):112-115. (In Russ.). DOI: https://doi.org/10.17238/issn2072-2419.2020.2.112
14. Snyder H. Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research. 2019;104:333-339. DOI: https://doi.org/10.1016/J.JBUSRES.2019.07.039
15. Mauriz J. L., Cuevas M. J., El-Mir M. Y., Almar M., Collado P. S., Gonzales-Gallego J. Enhancement of Bile Acid Pool Size, Synthesis and Secretion by Epomediol in the Rat. Digestive Diseases and Sciences. 2000;45(7):1433-1438. DOI: https://doi.org/10.1023/a:1005528725319
16. Naugler W. E., Tarlow B. D., Fedorov L. M., Taylor M., Pelz C., Li B., Darnell J., Grompe M. Fibroblast Growth Factor Signaling Controls Liver Size in Mice with Humanized Livers. Gastroenterology. 2015;149(3):728-740.e15. DOI: https://doi.org/10.1053/j.gastro.2015.05.043
17. Ocvirk S., O'keefe S. J. D. Dietary fat, bile acid metabolism and colorectal cancer. Seminars in Cancer Biology. 2021;73:347-355. DOI: https://doi.org/10.1016/j.semcancer.2020.10.003
18. Stepanov I. S., Kalugniy I. I., Markova D. S., Yashin A. V., Prusakov A. V., Ponamarev V. S., Lunegov A. M. Development and application of new methods of correction and prevention of metabolic diseases in Holstein cattle. IOP conference series: earth and environmental science: Agriculture, field cultivation, animal husbandry, forestry and agricultural products. 2021;723:022030. DOI: https://doi.org/10.1088/1755-1315/723/2/022030
19. Ponamarev V. S., Andreeva N. L., Koroleva E. S., Kostrova A. V. Biochemical blood parameters of experimental animals in the treatment with the drug "Hepaton" and comparison drugs of toxic liver damage caused by dichloroethane. Biotechnology: a look into the future: sat.tr. Stavropol': Stavropol'skiy gosudarstvennyy meditsinskiy universitet, 2020. pp. 19-21.
20. Boesjes M., Brufau G. Metabolic effects of bile acids in the gut in health and disease. Current Medicinal Chemistry. 2014;21(24):2822-2829. DOI: https://doi.org/10.2174/0929867321666140303142053
21. Ferrell J. M., Chiang J. Y. L. Bile acid receptors and signaling crosstalk in the liver, gut and brain. Liver Research. 2021;5(3):105-118. DOI: https://doi.org/10.1016/j.livres.2021.07.002
22. Kalugniy I. I., Markova D. S., Yashin A. V., Prusakov A. V., Ponamarev V. S., Andreeva N. L. Diagnosis of hepatopathy in Holstein cattle with metabolic disorders. IOP conference series: earth and environmental science: Agriculture, field cultivation, animal husbandry, forestry and agricultural products. 2021;723:022029. DOI: https://doi.org/10.1088/1755-1315/723/2/022029
23. Shilo R. S., Mogilevets E. V., Sheybak V. M., Vashchenko V. V. Providing the efficiency of the photodynamic therapy in experimental acute cholangitis on the basis of the estimation of the amino acid pool in blood plazma. Zdravookhranenie (Minsk) = Healthcare. 2021;(9(894)):43-49. (In Belarus).
24. Ponamarev V. S. Study of the embryotoxic and teratogenic effects of the drug "Hepaton". Innovative trends in the development of Russian science: Proceedings of the XIII International scientific and practical Conference of young scientists. Krasnoyarsk: Krasnoyarskiy gosudarstvennyy agrarnyy universitet, 2020. pp. 85-86.
25. Khavkin A. I., Volynets G. V., Nikitin N. A. The relationship of the gut microbiome and metabolism of bile acids. Voprosy prakticheskoy pediatrii = Clinical Practice in Pediatrics. 2020;15(1):53-60. (In Russ.). DOI: https://doi.org/10.20953/1817-7646-2020-1-53-60
26. Plotnikova E. Yu., Sukhikh A. S. Lipids: hepatoprotectors, the point of application, the pharmacological effects. Gastroenterologiya. Prilozhenie k zhurnalu Consilium Medicum. 2016;(1):5-11. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=26211002
27. Vakhrushev Ya. M., Lukashevich A. P., Penkina I. A., Suchkova E. V. Comparative analysis of bile acid spectrum in non-alcoholic fatty liver disease and cholelithiasis. Terapevticheskiy arkhiv = Therapeutic archive. 2019;91(2):48-51. (In Russ.). DOI: https://doi.org/10.26442/00403660.2019.02.000105
28. Anselm V., Novikova S., Zgoda V. Re-adaption on earth after spaceflights affects the mouse liver proteome. International Journal of Molecular Sciences. 2017;18(8):1763. DOI: https://doi.org/10.3390/ijms18081763
29. Veremeeva S. A., Kozlova S. V., Krasnolobova E. P., Sidorova K. A. On the issue of mucocele therapy in small breed dogs. Vestnik KrasGAU = The Bulletin of KrasGAU. 2021;(11(176)):138-143. (In Russ.). DOI: https://doi.org/10.36718/1819-4036-2021-11-138-143
30. Doden H. L., Wolf P. G., Gaskins H. R., Anantharaman K., Alves J. M. P., Ridlon J. M. Completion of the gut microbial epi-bile acid pathway. Gut Microbes. 2021;13(1):1907271. DOI https://doi.org/10.1080/19490976.2021.1907271
31. Natalini B., Sardella R., Gioiello A., Ianni F., Di Michele A., Marinozzi M. Determination of bile salt critical micellization concentration on the road to drug discovery. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:62-81. DOI https://doi.org/10.1016/j.jpba.2013.06.029
32. Butorova L. I., Ardatskaya M. D., Osadchuk M. A., Drobysheva A. E., Zagrebina E. A., Kadnikova N. G., Kalashnikova M. A., Luk'yanova E. I., Pavlova L. N., Plavnik R. G., Sayutina E. V., Topchiy T. B., Trunova S. N., Tuaeva E. M., Shustova N. Yu. Comparative effectiveness of ursodeoxycholic acid preparations in the treatment of biliary sludge. Terapevticheskiy arkhiv = Therapeutic archive. 2020;92(8):60-65. (In Russ.). DOI: https://doi.org/10.26442/00403660.2020.08.000700
33. Ponamarev V., Popova O., Baryshev V. The new in the enteral dysbiosis correction intensified by heavy metals and mycotoxins. FASEB Journal. 2022;36(S1):3059. DOI: https://doi.org/10.1096/fasebj.2022.36.S1.R3059
34. Horodyska J., Hamill R. M., Reyer H., Trakooljul N., Lawlor P. G., McCormack U. M., Wimmers K. RNA-seq of liver from pigs divergent in feed efficiency highlights shifts in macronutrient metabolism, hepatic growth and immune response. Frontiers in genetics. 2019;10:117. DOI: https://doi.org/10.3389/fgene.2019.00117
35. Baryshev V. A., Popova O. S., Ponamarev V. S. New methods for detoxification of heavy metals and mycotoxins in dairy cows. Online Journal of Animal and Feed Research. 2022;12(2):81-88. DOI: https://doi.org/10.51227/ojafr.2022.11
36. Xu J., Li X., Zhang F., Tang L., Wei J., Lei X., Wang H., Zhang Y., Li D., Tang X., Li G., Tang S., Wu H., Yang H. Integrated UPLC-Q/TOF-MS technique and MALDI-MS to study of the efficacy of Yixinshu capsules against heart failure in a rat model. Frontiers in Pharmacology. 2019;10:1474. DOI: https://doi.org/10.3389/fphar.2019.01474
37. Heinken A., Ravcheev D. A., Baldini F., Heirendt L., Fleming R. M. T., Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7(1):75. DOI: https://doi.org/10.1186/s40168-019-0689-3
38. Berezovsky V. A., Nikula T. D., Dynnik O. B. A pool of bile acids as a regulator of human gallbladder filling. Fiziologichnyi Zhurnal. 1993;39(4):103-107.
39. Tyuryumin Ya. L., Shanturov V. A., Tyuryumina E. E. Physiology of cholesterol metabolism (the review). Byulleten' Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk = Acta Biomedica Scientifica. 2012;(2-1(84)):153-158. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=17930145
40. Wang C., Zhu C., Shao L., Ye Ju., Shen Yi., Ren Yu. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease. Mediators of Inflammation. 2019;2019:7659509. DOI: https://doi.org/10.1155/2019/7659509
41. Chiang J. Y. L., Ferrell J. M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2020;318(3):G554-G573. DOI: https://doi.org/10.1152/ajpgi.00223.2019
42. Chiang J. Y. L., Ferrell J. M. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annual Review of Nutrition. 2019;39:175-200. DOI: https://doi.org/10.1146/annurev-nutr-082018-124344
43. Lutton C., Souidi M., Dubrac S., Parquet M. Liver sterol 27 hydroxylase in hamster: Modulation by steroids and diets. Atherosclerosis. 2000;151(1):318. DOI: https://doi.org/10.1016/S0021-9150(00)81450-1
44. Merlen G., Bidault-Jourdainne V., Kahale N., Glenisson M., Ursic-Bedoya J., Doignon I., Garcin I., Humbert L., Rainteau D., Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver International. 2020;40(5):1005-1015. DOI: https://doi.org/10.1111/liv.14427
45. Di Gregorio M. C., Cautela J., Galantini L. Physiology and physical chemistry of bile acids. International Journal of Molecular Sciences. 2021;22(4): 1780. DOI: https://doi.org/10.3390/ijms22041780
46. Baghdasaryan A., Trauner M., Chiba P. Clinical application of transcriptional activators of bile salt transporters. Molecular Aspects of Medicine. 2014;37:57-76. DOI: https://doi.org/10.1016/j.mam.2013.12.001
47. Popova O. S., Agafonova L. A. Features of bile acid metabolism in fish. Mezhdunarodnyy vestnik veterinarii = International Journal of Veterinary Medicine. 2022;(1):61-65. (In Russ.). DOI: https://doi.org/10.52419/issn2072-2419.2022.1.61
48. Di Ciaula A., Garruti G., Baccetto R. L., Molina-Molina E., Bonfrate L., Wang D. Q-H., Portincasa P. Bile acid physiology. Annals of hepatology. 2018;16(S1):S4-S14. DOI: https://doi.org/10.5604/01.3001.0010.5493
49. Weng G., Or Ya. S., Shen J., Xing S., Lun C., Day P., Granger B., Khe C. Derivatives of bile acids as FXR/TGR5 agonists and methods of their application: Patent RF, no. 2712099, 2020.
50. Grinevich V. B., Kravchuk Yu. A., Arapkhanovа M. M., Kon V. E., Mikhailova L. V., Ratnikova A. K. The role of bile acids in the variety of mechanisms of the formation of hepatic manifestations of metabolic syndrome. Eksperimental'naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2020;183(11):20-24. (In Russ.). DOI: https://doi.org/10.31146/1682-8658-ecg-183-11-20-24
51. Ilchenko A. A. Bile acids are normal and pathological. Eksperimental'naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2010;(4):3-13. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=15217896
52. Evangelakos I., Heeren J., Verkade E., Kuipers F. Role of bile acids in inflammatory liver diseases. Semin Immunopathol. 2021;43:577-590. DOI: https://doi.org/10.1007/s00281-021-00869-6
Review
For citations:
Kuznetsov Yu.E., Lunegov A.M., Ponamarev V.S., Romashova E.B. Pool of bile acids, its predictor functions and influence on the pathology of the hepatobiliary system (review). Agricultural Science Euro-North-East. 2022;23(5):587-599. (In Russ.) https://doi.org/10.30766/2072-9081.2022.23.5.587-599