Preview

Agricultural Science Euro-North-East

Advanced search

Trends in the development of methods of disposal of bark and bark-wood waste of long-term storage (review)

https://doi.org/10.30766/2072-9081.2022.23.5.611-632

Abstract

The present review analyzes the problem of accumulation and utilization of bark and bark-wood waste from wood-working and pulp and paper industries. The methods of utilization are systematized, which differ for "fresh" bark and bark-wood waste of a long shelf life. The essence of biotechnological methods of deep biotransformation of bark-wood waste of long shelf life is described in more detail: composting with the use of mineral fertilizers, stimulation of native microflora, use of activated sludge and artificial consortia of microorganisms, creation of biotechnical systems in the body of bark dumps, solid-phase fermentation of bark-wood waste by xylotrophic fungi. Successful examples of the implementation of methods of biotransformation of bark-wood waste of long-term storage in the bark dumps of pulp and paper enterprises of the Perm Region of Rusian Federation are given. The algorithm of utilization of bark-wood waste by solid-phase fermentation with the help of xylotrophic fungi at the bark dumps of Syktyvkar woodworking plant (Republoc of Komi, Russia) is proposed in order to obtain soil-like substrates and fertilizers, fruit bodies of edible xylotrophic fungi and valuable fungal metabolites for medicine.

About the Authors

V. V. Volodin
Institute of Biology of Komi Scientific Center of the Ural Branch of he Russian Academy of Sciences
Russian Federation

DSc in Biological sciences, Professor, Head. Laboratory of Biochemistry and Biotech-nology

28 Kommunisticheskaya str., Syktyvkar, Komi Republic, Russian Federation, 167982



A. A. Shubakov
Institute of Biology of Komi Scientific Center of the Ural Branch of he Russian Academy of Sciences
Russian Federation

PhD in Biological sciences, Associate Professor, Senior Researcher at the Laboratory of Biochemistry and Biotechnology

28 Kommunisticheskaya str., Syktyvkar, Komi Republic, Russian Federation, 167982



S. O. Volodina
Institute of Biology of Komi Scientific Center of the Ural Branch of he Russian Academy of Sciences
Russian Federation

PhD in Biological sciences, Senior Researcher at the Laboratory of Biochemistry and Biotechnology

28 Kommunisticheskaya str., Syktyvkar, Komi Republic, Russian Federation, 167982



N. N. Shergina
Institute of Biology of Komi Scientific Center of the Ural Branch of he Russian Academy of Sciences; Pitirim Sorokin Syktyvkar State University
Russian Federation

PhD in Biological sciences, Associate Professor, Senior Researcher at the Laboratory of Bio-chemistry and Biotechnology

28 Kommunisticheskaya str., Syktyvkar, Komi Republic, Russian Federation, 167982

Syktyvkar, Oktyabrsky Prospekt, 55, Syktyvkar, Komi Republic, Russian Federation



R. G. Vasilov
National Research Center «Kurchatov Institute»
Russian Federation

DSc in Biological sciences, Professor

Academician Kurchatov Square, 1, Moscow, Russian Federation, 123182



References

1. Wenig C., Dunlop J. W. C., Hehemeyer-Cürten J., Reppe F. J., Horbelt N., Krauthausen K., Fratzl P., Eder M. Advanced materials design based on waste wood and bark. Phil. Trans. R. Soc. 2021:379(2206):20200345. DOI: https://doi.org/10.1098/rsta.2020.0345

2. Alberg N. I., Sanzhieva S. E., Salkhofer S. Integrated sustainable waste management. Woodworking and pulp and paper industry. Moscow: Izdatel'skiy dom Akademii Estestvoznaniya, 2016. 308 p.

3. Mokhirev A. P., Bezrukikh Yu. A., Medvedev S. O. Recycling of wood wastes of timber industry, as a fac-tor of sustainable resource management. Inzhenernyy vestnik Dona = Engineering Journal of Don. 2015;(2-2):13. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=24132495

4. Mikhaylov K. L., Gushchin V. A., Tarakanov A. M. Collection and processing of logging residual and firewood in a felling area. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal = Bulletin of Higher Educational Institutions. Lesnoy Zhurnal (Russian Forestry Journal). 2016;(6):98-106. (In Russ.). DOI: https://doi.org/10.17238/issn0536-1036.2016.6.98

5. Mosyagin V. I. Problems of ecologization of the forest complex. Saint-Petersburg: LTA, 1999. 375 p.

6. Singh A., Singh A. Microbial degradation and value addition to food and agriculture waste. Current Microbiology. 2022;79:119. DOI: https://doi.org/10.1007/s00284-022-02809-5

7. Tripathi N., Hills C. D., Singh R. S., Atkinson C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Climate and Atmospheric Science. 2019;2:35. DOI: https://doi.org/10.1038/s41612-019-0093-5

8. Kumar A., Gautam A., Dutt D. Biotechnological transformation of lignocellulosic biomass in to industrial products: An Overview. Advanced in Bioscience and Biotechnology. 2016;7(3):149-168. DOI: https://doi.org/10.4236/abb.2016.73014

9. Simonov M. N., Torgovnikov G. I. Debarking machines. Device and operation. Moscow: Lesnaya promyshlennost', 1990. 182 p.

10. Kapitsa E. A., Shorokhova E. V., Romashkin I. V., Galibina N. A., Nikerova K. M., Kazartsev I. A. Decomposition of bark as a part of logging slash after clear-cutting in mixed middle boreal forests. Lesovedenie = Russian Journal of Forest Science. 2019;(1):38-48. (In Russ.). DOI: https://doi.org/10.1134/S0024114819010066

11. Soboleva S. V., Chentsova L. I., Voronin V. M. Processing of aspen bark to obtain biologically active sub-stances and feed products: monograph. Krasnoyarsk: SibGTU, 2013. 77 p.

12. Pásztory Z., Mohácsiné I. R., Gorbacheva G., Börcsök Z. The utilization of tree bark. BioResources. 2016;11(3):7859-7888. URL: https://bioresources.cnr.ncsu.edu/resources/the-utilization-of-tree-bark/

13. Belyakova A. Yu., Pogrebnyak A. V., Pogrebnyak L. V. Physico-chemical and biological properties of the components of the outer birch bark. Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education. 2015;(2-2):492. (In Russ.). URL: https://elibrary.ru/item.asp?id=24921354

14. Deyneko I. P., Deyneko I. V., Belov L. P. Investigation of the chemical composition of pine bark. Khimiya rastitel'nogo syr'ya = Chemistry of plant raw material. 2007;(1):19-24. (In Russ.). URL: https://elibrary.ru/item.asp?id=9482860

15. Korolev K. G., Lomovskiy O. I. A method for obtaining a biologically active amount of triterpene cislot: Patent RF, no. 2303589, 2007.

16. Kuznetsov B. N., Efremov A. A., Levdanskii V. A., Kuznetsova S. A., Polezhaeva N. I., Shilkina T. A., Krotova I. V. The using of non-isobaric pre-hydrolysis for the isolation of organic compounds from wood and bark. Bioresource Technology.1996;58(2):181-188. DOI: https://doi.org/10.1016/S0960-8524(96)00097-1

17. Levdanskiy V. A., Polezhaeva N. I., Shilkina T. A., Kuznetsov B. N. Extraction of extractive substances from the bark of larch and fir activated by water vapor in the presence of ammonium chloride. Khimiya rastitel'nogo syr'ya = Chemistry of plant raw material. 2001;(4):87-91. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=9337191

18. Jiang W., Adamopoulos S., Hosseinpourpia R., Žigon J., Petric M., Šernek M., Medved S. Utilization of partially liquefied bark for production of particleboards. Appl. Sci. 2020;10(15):5253. DOI: https://doi.org/10.3390/app10155253

19. Rodenkov V. P., Stolyarov V. F., Turbin V. V., Vorobev E. A., Konovalov N. M., Antonov A. N. A meth-od for producing activated carbon from sawdust and small chips and an installation for its implementation: Patent RF, no. 2104926, 1998.

20. Kocheva L. S., Karmanov A. P., Kochanova A. V. Method of obtaining sorbent of oil and petroleum prod-ucts: Patent RF, no. 2638354, 2017.

21. Lehtikangas P. Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy. 2001;20(5):351-360. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1

22. Yao J.-L., Fang S.-M., Liu R., Oppong M. B., Liu E.-W., Fan G.-W., Zhang H. A Review on the Terpenes from Genus Vitex. Molecules. 2016;21:1179. DOI: https://doi.org/10.3390/molecules21091179

23. Volodin V. V., Vu Tkhi L., Volodina S. O., Kuznetsov A. N. Eecdysteroid-containing plants of the national park Cuc Phuong (Northern Vietnam). Izvestiya Komi nauchnogo tsentra UrO RAN = Proceedings of the Komi science centre Ural branch Russian academy of sciences. 2018;3(35):46-53. (Un Russ.). URL: https://www.elibrary.ru/item.asp?id=35728633

24. Kamperidou V., Lykidis C., Barmpoutis P. Utilization of wood and bark of fast-growing hardwood species in energy production. J. For. Sci. 2018;64(4):164-170. DOI: https://doi.org/10.17221/141/2017-JFS

25. Shirinkina E. S. Minimization of the impact of bark-wood waste from the pulp and paper industry on the environment. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Prikladnaya ekologiya. Urbanistika = Bulletin of the Perm national research polytechnic university. Applied ecology. Urban development. 2014;(2):108-118. (In Russ.). URL: https://elibrary.ru/item.asp?id=21943543

26. Kaygorodov R. V. Impact of wood waste on biological activity of technogenic surface formations of road-side areas. Uspekhi sovremennogo estestvoznaniya. 2019;(11):83-88. (In Russ.). URL: https://elibrary.ru/item.asp?id=41435678

27. Veprikova E. V., Kuznetsova S. A., Chesnokov N. V., Kuznetsov B. N. Obtaining of organomineral ferti-lizers on the basis of wood bark (review). Zhurnal Sibirskogo federal'nogo universiteta. Khimiya = Journal of Sibe-rian Federal University. Chemistry. 2016;9(4):414-429. (In Russ.). DOI: https://doi.org/10.17516/1998-2836-2016-9-4-414-429

28. Mokrushina N. S., Tarasova T. S., Darmov I. V. Isolation of micromycetes which are promising in devel-oping a biopreparation for speeding up the composting of wood wastes into fertilizers. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo = Vestnik of Lobachevsky University of Nizhni Novgorod. 2010;(2-2):430-434. (In Russ.). URL: https://elibrary.ru/item.asp?id=15529284

29. Devyatlovskaya A. N. Tree bark use as greenhouse soil. Vestnik KrasGAU = The Bulletin of KrasGAU. 2010;(2):25-27. (In Russ.). URL: https://elibrary.ru/item.asp?id=14999093

30. Devyatlovskaya A. N., Zhuravleva L. N., Devyatlovskiy N. V. Utilization of wood bark of wood pro-cessing enterprises. Aktual'nye problemy lesnogo kompleksa. 2010;(27):51-54. (In Russ.). URL: https://elibrary.ru/item.asp?id=22696779

31. Dossa G. G. O., Schaefer D., Zhang J.-L., Tao J.-C., Cao K.-F., Corlett R. T., Cunningham A. B., Xu J.-C., Cornelissen J. H. C., Harrison R. D. The cover uncovered: bark control over wood decomposition. Journal of Ecology. 2018;106:2147-2160. 32. Gilbertson R. L. Wood-Rotting Fungi of North America. Mycologia. 1980;72(1):1-49. DOI: https://doi.org/10.1080/00275514.1980.12021153 33. Griffiths B. S., Caul S. Migration of bacterial‐feeding nematodes, but not proto-zoa, to decomposing grass residues. Biology and Fertility of Soils. 1993;15:201-207. DOI: https://doi.org/10.1007/BF00361612

32. Jurgensen M. F., Larsen M. J., Spano S. D., Harvey A. E., Gale M. R. Nitrogen fixation associated with increased wood decay in Douglas-fir residue. Forest Science. 1984;30:1038-1044.

33. Larsen M. J., Jurgensen M. F., Harvey A. E. N2 fixation associated with wood de-cayed by some common fungi in western Montana. Canadian Journal of Forest Re-search. 1978;8(3):341-345. DOI: https://doi.org/10.1139/X78-050

34. Merrill W., Cowling E. B. Role of nitrogen in wood deterioration – Amount and distribution of nitrogen in fungi. Phytopathology. 1966;56:1083-1090.

35. Alban D. H., Pastor J. Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Canadian Journal of Forest Research. 1993;23 (9):1744-1749. DOI: https://doi.org/10.1139/X93-220

36. Laiho R., Prescot C. E. The contribution of coarse woody debris to carbon, nitro-gen, and phosphorus cy-cles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research. 1999;29(10):1592-1603. DOI: https://doi.org/10.1139/X99-132

37. Larsen M. J., Jurgensen M. F., Harvey A. E. N2 fixation in brown-rotted soil wood in an intermountain ce-dar-hemlock ecosystem. Forest Science. 1982;28(2):292-296.

38. Rinne K. T., Rajala T., Peltoniemi K., Chen J., Smolander A., Mäkipää R. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Functional Ecology. 2017;31(2):530-541. DOI: https://doi.org/10.1111/1365-2435.12734

39. Petrillo M., Cherubini P., Fravolini G., Marchetti M., Ascher-Jenull J., Schärer M., Synal H. A., Bertoldi D., Camin F., Larcher R., Egli M. Time since death and de-cay rate constants of Norway spruce and Euro-pean larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosci-ences. 2016;13(5):1537-1552. DOI: https://doi.org/10.5194/bg-13-1537-2016

40. Strukelj M., Brais S., Quideau S. A., Angers V. A., Kebli H., Drapeau P., Oh S.-W. Chemical transfor-mations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research. 2013;43(9):785-798. DOI: https://doi.org/10.1139/CJFR-2013-0086

41. Laiho R., Prescott C. E. Decay and nutrient dynamics of coarse woody debris in northern coniferous for-ests: a synthesis. Canadian Journal of Forest Research. 2004;34(4):763-777. DOI: https://doi.org/10.1139/X03-241

42. Ruokolainen A., Shorohova E., Penttilä R., Kotkova V., Kushnevskaya H. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. European Journal of Forest Research. 2018;137:707-718. DOI: https://doi.org/10.1007/s10342-018-1135-y

43. Deyneko I. P., Faustova N. M. Elemental and group chemical composition of aspen bark and wood. Khimi-ya rastitel'nogo syr'ya = Chemistry of plant raw material. 2015;(1):51-62. (In Russ.). URL: https://elibrary.ru/item.asp?id=24148922

44. Poluboyarinov O. I., Sorokin A. M. Physical properties of pine bark and its components. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal = Lesnoy Zhurnal (Russian Forestry Journal). 1997;3:70-74. (In Russ.). URL: http://lesnoizhurnal.ru/issuesarchive/?ELEMENT_ID=70809

45. Palviainen M., Finér L. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management. 2015;358:1-11. DOI: https://doi.org/10.1016/J.FORECO.2015.08.036

46. Palviainen M., Finér L., Laiho R., Shorohova E., Kapitsa E., Vanha-Majamaa I. Carbon and nitrogen re-lease from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management. 2010;259(3):390-398. DOI: https://doi.org/10.1016/J.FORECO.2009.10.034

47. Dontsov A. G. Development of the concept of a bioethanol plant based on the biopalping technology platform. Butlerovskie soobshcheniya = Butlerov Communications. 2021;68(12):95-102. (In Russ.). URL: https://butlerov.com/files/reports/2021/vol68/12/95/21-68-12-95-.pdf

48. Kurilo O., Shirinkina E., Vaisman Y. Reducing the Negative Impact of Pulp and Paper Industry Wood Waste Landfill on the Environment by Using the Bark and Wood Waste of the Prolonged Storage. Ekologiya i promyshlennost' Rossii = Ecology and Industry of Russia. 2015;19(1):45-49. (In Russ.). URL: https://elibrary.ru/item.asp?id=22811217

49. Maksimov A. Yu., Maksimova Yu. G., Shilova A. V., Kolesova O. V., Simonetti Dzh. Evaluation of the prospects of biodegradation of cellulose-containing waste from Krasnokamsk woodworking enterprise (Perm re-gion) based on the study of their physical and chemical properties and microbiota. Vestnik Permskogo natsion-al'nogo issledovatel'skogo politekhnicheskogo universiteta. Khimicheskaya tekhnologiya i biotekhnologiya = Bulle-tin of the Perm national research polytechnic university. Chemical Technology and Biotechnology. 2018;(4):98-109. (In Russ.). DOI: https://doi.org/10.15593/2224-9400/2018.4.08

50. Maksimov A. Yu., Shilova A. V., Lisovenko N. Yu., Balandina S. Yu., Shchetko V. A. Application of the new fungicide incanon for pre-sowing seed treatment when growing tomato seedlings in artificial soil obtained by microbiological processing of bark-wood waste. Vestnik Permskogo universiteta. Khimiya = Bulletin of Perm uni-versity. Chemistry. 2020;10(1):108-117. (In Russ.). DOI: https://doi.org/10.17072/2223-1838-2020-1-108-117

51. Maksimov A. Yu., Shilova A. V., Maksimova Yu. G. A method for processing bark-wood waste, a bioreac-tor and a technological line for implementing the method: Patent RF no. 2729366, 2020.

52. Gorelov V. V., Ilarionov S. A., Basov V. N., Kuzovkina V. A., Basov A. V., Zonova L. D. The method of processing the scrap metal and the technological platform for its implementation: Patent RF no. 2520022, 2014.

53. Bioconversion of cellulose-containing raw materials (Tr. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. № 125). Pod red. V. V. Volodina. Syktyvkar: Komi NTs UrO RAN, 1992. 73 p.

54. Kulikova N. A., Klyayn O. I., Stepanova E. V., Koroleva O. V. Use of Basidiomycetes in Industrial Waste Processing and Utilization Technologies: Fundamental and Applied Aspects (Review). Prikladnaya biokhimiya i mikrobiologiya. 2011;47(6):619-634. (In Russ.). URL: https://elibrary.ru/item.asp?id=17238641

55. Wendiro D., Wacoo A. P., Wise G. Identifying indigenous practices for cultivation of wild saprophytic mushrooms: responding to the need for sustainable utilization of natural resources. Journal of Ethnobiology and Ethnomedicine. 2019;15:64. DOI: https://doi.org/10.1186/s13002-019-0342-z

56. Safonov M. A. Complexes of wood-destroying basidiomycetes of floodplain forests of the Southern Preurals (Orenburg region). Uspekhi sovremennogo estestvoznaniya. 2015;(8):62-65. (In Russ.). URL: https://elibrary.ru/item.asp?id=24171678 59. Palamarchuk M. A. Xylotrophic agaricoid basidiomycetes of the Pechora-Ilych Reserve (Northern Urals). Khvoynye boreal'noy zony = Conifers of the boreal area. 2009;26(1):67-71. (In Russ.). URL: https://elibrary.ru/item.asp?id=12330615

57. Mukhin V. A. Biota of xylotrophic basidiomycetes of the West Siberian Plain. Ekaterinburg: UIF «Nauka», 1993. 232 p.

58. Bari E., Karimi K., Aghajani H., Schmidt O., Zacheri S., Tajick-Ghanbary M. A., Juybari H. Z. Characteri-zations of tree-decay fungi by molecular and morphological investigationsin aniranian alamdardeh forest. Maderas. Ciencia y tecnología. 2021;23(33). DOI: https://doi.org/10.4067/S0718-221X2021000100433

59. Fukasawa Y. Ecological impacts of fungal wood decay types: A review of current knowledge and future research directions. Ecological ResearchVolume. 2021;36(6):910-931. DOI: https://doi.org/10.1111/1440-1703.12260

60. Krah F. S., Bässler C., Heibl C., Soghigian J., Schaefer H., Hibbett D. S. Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evolutionary Biology. 2018;18:119. DOI: https://doi.org/10.1186/s12862-018-1229-7

61. Fedorova T. V., Shakhova N. V., Klyayn O. I., Glazunova O. A., Maloshenok L. G., Kulikova N. A., Psurtseva N. V., Koroleva O. V. Comparative analysis of the ligninolytic potential of basidiomycetes belonging to different taxonomic and ecological groups. Prikladnaya biokhimiya i mikrobiologiya. 2013;49(6):570-579. (In Russ.). URL: https://elibrary.ru/item.asp?id=20280611

62. Lustenhouwera N., Maynard D. S., Bradfordd M. A., Lindnere D. L., Oberle B., Zanne A. E., Crowther Th. W. A trait-based understanding of wood decomposition by fungi. PNAS. 2020;117(21):11551-11558. DOI: https://doi.org/10.1073/pnas.1909166117

63. Kononov G. N., Verevkin A. N., Serdyukova Yu. V., Zaytsev V. D. Wood mycolysis, its products and their use. I. Ecological aspects of mycological wood destruction. Lesnoy vestnik = Forestry Bulletin. 2020;24(2):81-87. (In Russ.). DOI: https://doi.org/10.18698/2542-1468-2020-2-81-87

64. Li T., Cui L., Song X., Cui X., Wei Yu., Tang L., Mu Ya., Xu Z. Wood decay fungi: an analysis of world-wide research. Journal of Soils and Sediments. 2022;22:1688-1702. DOI: https://doi.org/10.1007/s11368-022-03225-9

65. Bogorodskaya A. V., Kiseleva O. V. Use of wood waste bioconversion products as biofertilizers for remedia-tionof degraded soils. Agrokhimiya. 2021;(2):86-93. (In Russ.). DOI: https://doi.org/10.31857/S0002188121020046 69. Mallak A. M., Lakzian A., Khodaverdi E., Haghnia G. H., Mahmoudi S. Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes. Micro-bial Pathogenesis. 2020;149(6):104473. DOI: https://doi.org/10.1016/j.micpath.2020.104473

66. Mamaeva O. O., Isaeva E. V. Use of Post-Extraction Fir Wood Greenery Residues by the Bioconversion Method with the Production of Feed Additives. Forests. 2021;12(3):272. DOI: https://doi.org/10.3390/f12030272

67. Hu K., Peris A., Toran J., Eljarrat E., Sarra M., Blanquez P., Caminal G. Exploring the degradation capa-bility of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix. Chemoshere. 2020;250:126293. DOI: https://doi.org/10.1016/j.chemosphere.2020.126293

68. Tišma M., Žnidaršič-Plazl P., Šelo G., Tolj I., Šperanda M., Bucić-Kojić A., Planinić M. Trametes versi-color in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. Bioresour Technology. 2021;330:124997. DOI: https://doi.org/10.1016/j.biortech.2021.124997

69. Zubchenko A. V., Kozhevnikova E. Yu., Barkov A. V., Topolyuk Yu. A., Shnyreva A. V., Vinokurov V. A., Magadova L. A. Potential use of basidiomycota Trametes hirsuta MT-17.24 in biodegradation of polyanionic cellulose. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Universities. Applied Chemistry and Bio-technology. 2021;11(3):472-480. (In Russ.). DOI: https://doi.org/10.21285/2227-2925-2021-11-3-472-480

70. Pavlov I. N., Litovka Yu. A., Litvinova E. A., Petrenko S. M., Enazarov R. Kh. Prospects for deep cultiva-tion of Fomitopsis pinicola (Sw.) P. Karst. on hydrodynamic ac-tivated plant waste. Khimiya rastitel'nogo syr'ya = Chemistry of plant raw material. 2020;(4):385-394. (In Russ.). URL: https://elibrary.ru/item.asp?id=44529560

71. Volodin V. V., Shergina N. N., Martynov V. V., Volodina S. O., Shubakov A. A., Kozhevnikova E. Yu., Shirshova T. I., Vasilov R. G. Biotechnological potential of wood-destroying fungi for biofuel production. Vestnik biotekhnologii i fiziko-khimicheskoy biologii im. Yu. A. Ovchinnikova = Bulletin of biotechnology and physico-chemical biology named after Yu. A. Ovchinnikov. 2021;17(4):11-23. (In Russ.). URL: https://biorosinfo.ru/journal/

72. Smirnov K. A., Alashkevich Yu. L., Reshetova N. S. Features of solid state fermentation. Khimiya ras-titel'nogo syr'ya = Chemistry of plant raw material. 2009;(3):161-164. (In Russ.). URL: https://elibrary.ru/item.asp?id=13008084&

73. Sadh P. K., Duhan S., Duhan J. S. Agro-industrial wastes and their utilization using solid state fermenta-tion: a review. Bioresour. Bioprocess. 2018;5(1):1-15. DOI: https://doi.org/10.1186/s40643-017-0187-z

74. Golyshkin A. V, Almyasheva N. R., Krasnopolskaya L. M. A substrate for the cultivation of xylotrophic basidiomycetes and a method for its preparation using methods of chemical modification of lignocellulose raw materials: Patent RF no. 2699991. 2019.

75. Thomas L., Larroche C., Pandey A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013;81:146-161. DOI: https://doi.org/10.1016/j.bej.2013.10.013

76. Kulishov B. A., Le An Tuan, Kanarskiy A. V. Utilization of waste from the processing of plant raw materi-als in bioreactors for solid-phase fermentation. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015;18(3):286-290. (In Russ.). URL: https://elibrary.ru/item.asp?id=23021888


Review

For citations:


Volodin V.V., Shubakov A.A., Volodina S.O., Shergina N.N., Vasilov R.G. Trends in the development of methods of disposal of bark and bark-wood waste of long-term storage (review). Agricultural Science Euro-North-East. 2022;23(5):611-632. (In Russ.) https://doi.org/10.30766/2072-9081.2022.23.5.611-632

Views: 462


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)