Preview

Agricultural Science Euro-North-East

Advanced search

Application of microsatellites in population genetic studies of reindeer (Rangifer tarandus) (review)

https://doi.org/10.30766/2072-9081.2024.25.4.525-537

Abstract

Over a few past decades, theoretical, analytical, and methodological advances in genetics have revolutionized population genetic research, providing a better understanding of evolutionary processes and the history of populations and species. Methodologically, this progress is largely due to the invention of polymerase chain reaction technology and the introduction of microsatellite DNA markers. This review discusses trends in the use of microsatellite markers as effective tools for solving a wide range of issues in population genetics, conservation and evolutionary biology of the only species of the genus Rangifer – reindeer. Based on the analysis of both experimental and review publications (78 sources) of the scientific teams of the Russian Federation, Canada, the United States of America, Ireland, Japan, China, Norway the first works on the successful amplification of reindeer microsatellites have been summarized. There has been demonstrated the significance of the data of markers for studying intra- and inter-population diversity, differentiation, genetic relationships, the impact of anthropogenic factors on genetic diversity and genetic isolation of populations, as well as for reconstructing the evolutionary history of the various reindeer forms.

About the Authors

V. R. Kharzinova
Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Veronika R. Kharzinova, PhD in Biological Science, leading researcher, the Laboratory of DNA technologies in animal husbandry

Dubrovitsy 60, Podolsk, Moscow region, Russian Federation, 142132



N. A. Zinovieva
Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst
Russian Federation

Natalia A. Zinovieva, academician of RAS, professor, DSc in Biological Science, Director

Dubrovitsy 60, Podolsk, Moscow region, Russian Federation, 142132



References

1. Omasheva M. E., Aubakirova K. P., Ryabushkina N. A. Molecular markers. causes and consequences of genotyping errors. Biotekhnologiya. Teoriya i praktika. 2013;(4):20–28. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=25612911

2. Kiyko E. I. Principle of marker selection in dairy cattle breeding. Vestnik Tambovskogo universiteta. Ceriya: estestvennye i tekhnicheskie nauki = Tambov University Reviews Series Natural and Technical Sciences. 2010;15(1):134–135. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=14805077

3. Litt M. A., Luty J. A. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics. 1989;44(3):397–401

4. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research. 1989;17(16):6463–6471. DOI: https://doi.org/10.1093/nar/17.16.6463

5. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics. 1989;44(3):388–396.

6. Edwards A., Civitello A., Hammond H. A., Caskey C. T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. The American Journal of Human Genetics. 1991;49(4):746–775.

7. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandemrepetitive hypervariable loci in human DNA. Nature. 1988;332(6161):278–281. DOI: https://doi.org/10.1038/332278a0

8. Abdul-Muneer P. M. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genetics Research International. 2014;2014(1):691759. DOI: https://doi.org/10.1155/2014/691759

9. Hoffman J. I., Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Molecular Ecology. 2005;14(2):599–612. DOI: https://doi.org/10.1111/j.1365-294X.2004.02419.x

10. Rajendrakumar P., Biswal A. K., Balachandran S. M., Srinivasarao K., Sundaram R. M. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics. 2007;23(1):1–4. DOI: https://doi.org/10.1093/bioinformatics/btl547

11. Kalia R. K., Rai M. K., Kalia S., Singh R., Dhawan A. K. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177:309–334. DOI: https://doi.org/10.1007/s10681-010-0286-9

12. Bishop M. D., Kappes S. M., Keele J. W., Stone R. T., Sunden S. L., Hawkins G. A., Toldo S. S., Fries R., Grosz M. D., Yoo J. A genetic linkage map for cattle. Genetics. 1994;136(2):619–639. DOI: https://doi.org/10.1093/genetics/136.2.619

13. Bishop M. D., Hawkins G. A., Keeler C. L. Use of DNA markers in animal selection. Theriogenology. 1995;43(1):61–70. DOI: https://doi.org/10.1016/0093-691X(94)00018-P

14. Peakall R., Gilmore S., Keys W., Morgante M., Rafaske A. Cross-species amplification of soybean (Glycine max) simple sequence repeat (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution. 1998;15(10):1275–1287. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a025856

15. Baron E. E., Mário L. M., Verneque R. S., Coutinho L. L. Parentage testing and effect of misidentification on the estimation of breeding value in Gir cattle. Genetics and Molecular Biology. 2002;25(4):389–394. DOI: https://doi.org/10.1590/S1415-47572002000400006

16. Kuleung C., Baenziger P. S., Dweikat I. Transferability of SSR markers among wheat, rye and triticale. Theoretical and Applied Genetics. 2004;108:1147–1150. DOI: https://doi.org/10.1007/s00122-003-1532-5

17. Yang W., Kang X., Yang Q., Lin Y., Fang M. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology. 2013;(4):2. DOI: https://doi.org/10.1186/2049-1891-4-2

18. Tabbasam N., Zafar Y., Mehboob-ur-Rahman. Pros and cons of using genomic SSRs and EST-SSRs for resolving phylogeny of the genus Gossypium. Plant Systics and Evolution. 2014;300:559–575. DOI: https://doi.org/10.1007/s00606-013-0891-x

19. Hasan N., Choudhary S., Naaz N., Sharma N., Laskar R. A. Recent advancements in molecular markerassisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology. 2021;19(1):128. DOI: https://doi.org/10.1186/s43141-021-00231-1

20. Mohindra V., Mishra A., Palanichamy M., Ponniah A. G. Cross-species amplification of Catla catla microsatellite locus in Labeo rohita. Indian Journal of Fisheries. 2001;48(1):103–108. URL: https://epubs.icar.org.in/index.php/IJF/article/view/8492/3463

21. Carneiro V. M. L., Santini L., Diniz A. L., de Freitas Munhoz C. Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology. 2016;39(3):312–328. DOI: https://doi.org/10.1590/1678-4685-gmb-2016-0027

22. Pei J., Bao P., Chu M., Liang C., Ding X., Wang H., Wu X., Guo X., Yan P. Evaluation of 17 microsatellite markers for parentage testing and individual identification of domestic yak (Bos grunniens). PeerJ. 2018;6:e5946. DOI: https://doi.org/10.7717/peerj.5946

23. Gladyr E. A., Gorelov P. V., Maurcheva V. N., Shakhin A. V., Chinarov Yu. I., Zinovieva N. A. Effectiveness evaluation of test-system based on microsatellites for dna expertise in cattle. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2011;(8):51–54. (In Russ.). URL: https://elibrary.ru/item.asp?id=16690837

24. Zhao J., Zhu C., Xu Z., Jiang X., Yang S., Chen A. Microsatellite markers for animal identification and meat traceability of six beef cattle breeds in the Chinese market. Food Control. 2017;78:469–475. DOI: https://doi.org/10.1016/j.foodcont.2017.03.017

25. Kang S. W., Lee S. Y., Chio D. H., Kang H. J., Hu M. B., Yang Y. J. Statistical analysis of alleles in 4703 thoroughbred racing horses using fifteen microsatellite DNA markers. Journal of Animal Science. 2016;94:88. DOI: https://doi.org/10.2527/jas2016.94supplement488x

26. Kalinkova L. V. Molecular genetic examination of the authenticity of the pedigree horses. Effektivnoe zhivotnovodstvo. 2018;(6(145)):70–72. (In Russ.). URL: https://elibrary.ru/item.asp?id=35554714

27. Zinovieva N. A., Kharzinova V. R., Logvinova T. I., Gladyr' E. A., Sizareva E. I., Chinarov Yu. I. Microsatellite profiles as criteria for confirmation of breed purity and for evaluation of heterogeneity degree of parents' pairs in pig breeding. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2011;46(6):47–53. (In Russ.).

28. Radko A., Podbielska A. Microsatellite DNA Analysis of genetic diversity and parentage testing in the popular dog breeds in Poland. Genes (Basel). 2021;12(4):485. DOI: https://doi.org/10.3390/genes12040485

29. Koskinen M. T., Bredbacka P. Assessment of the population structure of five Finnish dog breeds with microsatellites. Animal genetics. 2000;31(5):310–317. DOI: https://doi.org/10.1046/j.1365-2052.2000.00669.x

30. Deniskova T. E., Selionova M. I., Gladyr' E. A., Dotsev A. V., Bobryshova G. T., Kostyunina O. V., Brem G., Zinovieva N. A. Variability of microsatellites in sheep breeds raced in russia. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2016;51(6):801–810. (In Russ.). URL: https://elibrary.ru/item.asp?id=27639405

31. Weising K., Winter P., Huttel B., Kahl G. Microsatellite markers for molecular breeding. Journal of Crop Production. 1997;1(1):113–143. DOI: https://doi.org/10.1300/j144v01n01_06

32. Røed K. H., Ferguson K. H., Crête M. A. D., Bergerud T. A. Genetic variation in transferrin as a predictor for differentiation and evolution of caribou from eastern Canada. Rangifer. 2010;11:65–74. DOI: https://doi.org/10.7557/2.11.2.979

33. Zhai J. C., Liu W. S., Yin Y. J., Xia Y. L., Li H. P. Analysis on genetic diversity of reindeer (Rangifer tarandus) in the Greater Khingan Mountains using microsatellite markers. Zoological Studies. 2017;56:e11. DOI: https://doi.org/10.6620/ZS.2017.56-11

34. Krutikova A. A., Peglivanyan G. K. Dynamics of slaughter weight of domestic reindeer of Yamal peninsula depending on gender and age. International Research Journal. 2023;(12(138)). (In Russ.). DOI: https://doi.org/10.23670/IRJ.2023.138.28

35. Gordon B. Rangifer and man: An ancient relationship. Rangifer. 2003;23(14):15–28. DOI: https://doi.org/10.7557/2.23.5.1651

36. Kharzinova V. R., Deniskova T. E., Sermyagin A. A., Dotsev A. V., Solovieva A. D., Zinovieva N. A. Evolution of the methods for estimation biodiversity in reindeer (Rangifer tarandus) (review). Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2017;52(6):1083–1093. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2017.6.1083rus

37. Brizgalov G., Ignatovich L. Selection and breeding work in northern reindeer husbandry (to change the development paradigm). Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2021;(4):29–36. (In Russ.). DOI: https://doi.org/10.31043/2410-2733-2021-4-29-36

38. Hall R. J. Deer. In: Cockett N. E., Kole C. (eds) Genome mapping and genomics in domestic animals. Genome mapping and genomics in animals. Springer, Berlin, Heidelberg, 2009. Vol. 3. Chapter 4. DOI: https://doi.org/10.1007/978-3-540-73835-0

39. Polziehn R. O., Strobeck C. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Molecular Phylogenetics and Evolution. 1998;10(2):249–258. DOI: https://doi.org/10.1006/mpev.1998.0527

40. Ludt C. J., Schroeder W., Rottmann O., Kuehn R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Molecular phylogenetics and evolution. 2004;31(3):1064–1083. DOI: https://doi.org/10.1016/j.ympev.2003.10.003

41. Cote S. D., Dallas J. F., Marshall F., Irvine R. J., Langvatn R., Albon S. D. Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer. Molecular Ecology. 2002;11(10):1923–1930. DOI: https://doi.org/10.1046/j.1365-294X.2002.01582.x

42. Deniskova T. E., Kharzinova V. R., Dotsev A. V., Solovieva А. D., Romanenko Т. М., Yuzhakov А. А., Layshev К. А., Brem G., Zinovieva N. A. Genetic characteristics of regional populations of Nenets reindeer breed (Rangifer tarandus). Agricultural Biology. 2018;53(6):1152–1161. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2018.6.1152eng

43. Ju Y., Liu H., Rong M., Zhang R., Dong Y., Zhou Y., Xing X. Genetic diversity and population genetic structure of the only population of Aoluguya Reindeer (Rangifer tarandus) in China. Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis. 2019;30(1):24–29. DOI: https://doi.org/10.1080/24701394.2018.1448081

44. Anderson D. G., Kvie K. S., Davydov V. N., Røed K. H. Maintaining genetic integrity of coexisting wild and domestic populations: Genetic differentiation between wild and domestic Rangifer with long traditions of intentional interbreeding. Ecology and Evolution. 2017;7(17):6790–6802. DOI: https://doi.org/10.1002/ece3.3230

45. Kharzinova V. R., Dotsev A. V., Kramarenko A. S., Layshev K. A., Romanenko T. M., Solov’eva A. D., Deniskova T. E., Kostyunina O. V., Brem G., Zinovieva N. A. Study of the allele pool and the degree of genetic introgression of semidomesticated and wild populations of reindeer (Rangifer tarandus L., 1758) using microsatellites. Agricultural Biology. 2016;51:811–834. DOI: https://doi.org/10.15389/agrobiology.2016.6.811eng

46. Svishcheva G. R., Babayan O. V., Sipko T. P., Kashtanov S. N., Kholodova M. V., Stolpovsky Y. A. Genetic differentiation between coexisting wild and domestic reindeer (Rangifer tarandus L. 1758) in Northern Eurasia. Genetic Resources. 2022;3(6):1–14. URL: https://www.genresj.org/index.php/grj/article/view/genresj.UYML5006

47. Røed K. H., Flagstad O., Nieminen M., Holand O., Dwyer M. J., Røv N., Vilà C. Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proceedings of the Royal Society B. Biological Sciences. 2008;275(1645):1849–1855. DOI: https://doi.org/10.1098/rspb.2008.0332

48. Colson K. E., Mager K. H., Hundertmark K. J. Reindeer introgression and the population genetics of caribou in southwestern Alaska. Journal of Heredity. 2014;105(5):585–596. DOI: https://doi.org/10.1093/jhered/esu030

49. Klütsch C. F., Manseau M., Trim V., Polfus J., Wilson P. J. The eastern migratory caribou: the role of genetic introgression in ecotype evolution. Royal Society Open Science. 2016;3(2):150469. DOI: https://doi.org/10.1098/rsos.150469

50. Weckworth B. V., Musiani M., McDevitt A. D., Hebblewhite M., Mariani S. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation. Molecular Ecology. 2012;21(14):3610–3624. DOI: https://doi.org/10.1111/j.1365-294X.2012.05621.x

51. Dotsev A. V., Romanenko T. M., Kharzinova V. R., Solovieva A. D., Layshev K. A., Brem G., Zinovieva N. A. Study of phenotypic and genotypic features of reindeer populations of the nenets breed. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2017;52(6):1175–1183. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2017.6.1175rus

52. Kharzinova V. R., Karpushkina T. V., Dotsev A. V., Solovieva A. D., Romanenko T. M., Brem G., Zinovieva N. A. 213 Association of microsatellite profile with phenotypic traits of semi-domesticated reindeer. Journal of Animal Science. 2017;95(Suppl. 4):105. DOI: https://doi.org/10.2527/asasann.2017.213

53. Dotsev A. V., Kharzinova V. R., Romanenko T. M., Brem G., Nikitkina E. V., Zinovieva N. A. PSVIII-22 Microsatellite-based heterozygosity fitness correlations in reindeer. Journal of Animal Science. 2019;97(Supp. 3):266. DOI: https://doi.org/10.1093/jas/skz258.541

54. Thompson L. M., Klütsch C. F. C., Manseau M., Wilson P. J. Spatial differences in genetic diversity and northward migration suggest genetic erosion along the boreal caribou southern range limit and continued range retraction. Ecology and Evolution. 2019;9(12):7030–7046. DOI: https://doi.org/10.1002/ece3.5269

55. Peeters B., Le Moullec M., Raeymaekers J. A. M., Marquez J. F., Røed K. H., Pedersen Å. Ø., Veiberg V., Loe L. E., Hansen B. B. Sea ice loss increases genetic isolation in a high Arctic ungulate metapopulation. Global change biology. 2020;26(4):2028–2041. DOI: https://doi.org/10.1111/gcb.14965

56. Muneer P. M. A., Gopalakrishnan A., Shivanandan R., Basheer V. S., Ponniah A. G. Genetic variation and phylogenetic relationship between two species of yellow catfish, Horabagrus brachysoma and H. nigricollaris (Teleostei: Horabagridae) based on RAPD and microsatellite markers. Molecular Biology Reports. 2011;38(4):2225–2232. DOI: https://doi.org/10.1007/s11033-010-0352-3

57. Sudheer P. D. V. N., Mastan S. G., Rahman H., Ravi Prakash C., Singh S., Reddy M. P. Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa: cross species amplification and genetic relationship of Jatropha using novel microsatellites. Molecular Biology Reports. 2011;38(2):1383–1388. DOI: https://doi.org/10.1007/s11033-010-0241-9

58. Kim K. S., Min M. S., An J. H, Lee H. Cross-species amplification of Bovidae microsatellites and low diversity of the endangered Korean goral. Journal of Heredity. 2004;95(6):521–525. DOI: https://doi.org/10.1093/jhered/esh082

59. Yasodha R., Ghosh M., Sumathi R., Gurumurthi K. Cross-species amplification of eucalyptus SSR markers in Casuarinaceae. Acta Botanica Croatica. 2005;64(1):115–120. URL: https://hrcak.srce.hr/file/5717

60. Kotova S. A., Zablotskaya E. A., Spivak E. A., Rybakova V. I., Nedzvetskaya D. E., Tsybovskiy I. S. Crossamplification of microsatellite dna-markers in species polymorphism investigations of the order Artiodactyla. Molekulyarnaya i prikladnaya genetika. 2017;22:25–33. (In Russ.). URL: https://elibrary.ru/item.asp?id=29328279

61. Engel S. R., Linn R. A., Taylor J. F., Davis S. K. Conservation of microsatellite loci across species of Artiodactyls: implications for population studies. Journal of Mammalogy. 1996;77(2):504–518. DOI: https://doi.org/10.2307/1382825

62. Wilson G. A., Strobeck C., Wu L., Coffin J. W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Molecular ecology. 1997;6(7):697–699. DOI: https://doi.org/10.1046/j.1365-294x.1997.00237.x

63. Røed K. H., Midthjell L. Microsatellites in reindeer, Rangifer tarandus, and their use in other Cervids. Molecular ecology. 1998;7(12):1773–1776. DOI: https://doi.org/10.1046/j.1365-294x.1998.00514.x

64. Cronin M. A., MacNeil M. D., Patton J. C. Mitochondrial DNA and microsatellite DNA variation in domestic reindeer (Rangifer tarandus tarandus) and relationships with wild caribou (Rangifer tarandus granti, Rangifer tarandus groenlandicus, and Rangifer tarandus caribou). Journal of Heredity. 2006;97(5):525–530. DOI: https://doi.org/10.1093/jhered/esl012

65. Mager K. H., Colson K. E., Hundertmark K. J. High genetic connectivity and introgression from domestic reindeer characterize northern Alaska caribou herds. Conservation Genetics. 2013;14(6):1111–1123. DOI: https://doi.org/10.1007/s10592-013-0499-2

66. Jepsen B. I., Siegismund H. R., Fredholm M. Population genetics of the native caribou (Rangifer tarandus groenlandicus) and the semi-domestic reindeer (Rangifer tarandus tarandus) in Southwestern Greenland: evidence of introgression. Conservation Genetics. 2002;3:401–409. DOI: https://doi.org/10.1023/A:1020523303815

67. Kharzinova V. R., Gladyr E. A., Fedorov V. I., Romanenko T. M., Shimit L. D., Layshev K. A., Kalashnikova L. A., Zinovieva N. A. Development of multiplex microsatellite panel to assess the parentage verification in and differentiation degree of reindeer populations (Rangifer tarandus). Agricultural Biology. 2015;50(6):756–765. DOI: https://doi.org/10.15389/agrobiology.2015.6.756eng

68. Koshkina O. A., Solovieva A. D., Deniskova T. E., Kharzinova V. R., Zinovieva N. A. Study of the genetic diversity of domestic and wild reindeer (Rangifer tarandus L., 1758) populations using nuclear and mitochondrial genomic markers. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2022;57(6):1101–1116. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2022.6.1101rus

69. Kharzinova V. R., Dotsev A. V., Solovieva A. D., Fedorov V. I., Brem G., Zinovieva N. A. Estimation of biodiversity and population structure of Russian reindeer (Rangifer tarandus) breeds inhabiting Northeastern Siberia (Republic of Sakha – Yakutia) using microsatellite markers. Acta Fytotechnica et Zootechnica. 2016;19(3):87–92. DOI: https://doi.org/10.15414/afz.2016.19.03.87-92

70. Solovieva A., Kharzinova V., Deniskova T., Zinovieva N. Study of the genetic structure of domestic and wild reindeer in the Republic of Sakha (Yakutia) using STR analysis. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2022;(3):5–11. (In Russ.). DOI: https://doi.org/10.31043/2410-2733-2022-3-5-11

71. Romanenko T. M., Kharzinova V. R., Layshev K. A. Characteristics of micropulation of the nenets reindeer of malozemelskaya tundra NAO. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2020;(2):37–43. (In Russ.). URL: https://elibrary.ru/item.asp?id=43162320

72. Nikolaev S. V., Matyukov V. S., Filatov A. V. Changes in the microsatellite profile in an experimental herd of nenets reindeer. Mezhdunarodnyy vestnik veterinarii = International Bulletin of Veterinary Medicine. 2023;(3):275–283. (In Russ.). DOI: https://doi.org/10.52419/issn2072-2419.2023.3.275

73. Kharzinova V. R., Kudryavtsev A. V., Semerikova M. N., Zinovieva N. A. Study of the population structure and genetic diversity of the chukotka reindeer breed based on the microsatellites analysis. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2023;37(9):87–92. (In Russ.). DOI: https://doi.org/10.53859/02352451_2023_37_9_87

74. Kharzinova V. R., Dotsev A. V., Solovieva A. D., Fedorov V. I., Shimit L. D., Romanenko T. M., Senchik A. V., Sergeeva O. K., Goncharov V. V., Layshev K. A., Yuzhakov A. A., Brem G., Zinovieva N. A. PSIII-15 Genetic variability of Russian domestic reindeer populations (Rangifer Tarandus) by microsatellites. Journal of Animal Science. 2020;98(Suppl.4):237–238. DOI: https://doi.org/10.1093/jas/skaa278.435

75. Baranova A. I., Kholodova M. V., Sipko T. P. The genetic structure of the wild reindeer (Rangifer tarandus) Russia on the basis of polymorphism of microsatellite loci. Topical issues of modern zoology and ecology of animals: Proceedings of the All-Russian Scientific Conference dedicated to the 70th anniversary of the Department of Zoology and Ecology of Penza State University and the memory of Professor V. P. Denisov (1932-1997). Penza: Penzenskiy GU, 2016. pp. 21. URL: https://www.elibrary.ru/item.asp?edn=xexeel&ysclid=lwaieypffc136387386

76. Kholodova M. V., Baranova A. I. The study of the genetic diversity of reindeer in the European part of Russia, the significance of the results for theory and practice. Forest reindeer problems and prospects of conservation in the European north of Russia: collection of articles. Pod obshch. red. N. Shmatkova. Moscow: Vsemirnyy fond dikoy prirody (WWF), 2021. pp. 17–19. DOI: https://doi.org/10.47364/9785604736210_17

77. Dodokhov V. V., Pavlova N. I., Kalashnikova L. A. Polymorphism of DNA microsatellite among chukotka reindeer. Agrarnyy nauchnyy zhurnal = The Agrarian Scientific Journal. 2020;(9):49–53. (In Russ.). DOI: https://doi.org/10.28983/asj.y2020i9pp49-53

78. Filippova N. P., Koryakina L. P., Pavlova A. I. Assessment of genetic structure of reindeer of the even breed. Genetika i razvedenie zhivotnykh = Genetics and breeding of animals. 2020;(1):44–49. (In Russ.). URL: https://elibrary.ru/item.asp?id=42672645

79. Semina M. T., Kashtanov S. N., Babayan O. V., Layshev K. A., Yuzha-kov A. A., Voronkova V. N., Nikolaeva E. A., Svishcheva G. R. Analysis of the genetic diversity and population structure of the nenets native breed of reindeer based on microsatellite markers. Genetika = Russian Journal of Genetics. 2022;58(8):954–966. (In Russ.). DOI: https://doi.org/10.31857/S0016675822080069

80. Stolpovskiy Yu. A., Babayan O. V., Kashtanov S. N., Piskunov A. K., Semina M. T., Kholodova M. V., Layshev K. A., Yuzhakov A. A., Romanenko T. M., Lisichkina M. G., Dmitrieva T. I., Etylina O. V., Prokudin A. V., Svishcheva G. R. Genetic evaluation of the breeds of reindeer (Rangifer tarandus) and their wild ancestor using a new panel of str markers. Genetika = Russian Journal of Genetics. 2020;56(12):1410–1426. (In Russ.). DOI: https://doi.org/10.31857/S0016675820120139


Review

For citations:


Kharzinova V.R., Zinovieva N.A. Application of microsatellites in population genetic studies of reindeer (Rangifer tarandus) (review). Agricultural Science Euro-North-East. 2024;25(4):525–537. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.4.525-537

Views: 514


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)