Preview

Agricultural Science Euro-North-East

Advanced search

The influence of UV-A on some morphometric and biochemical parameters of potato regenerate plants

https://doi.org/10.30766/2072-9081.2024.25.4.592-601

Abstract

The ultraviolet radiation (UVR) is the part of light spectrum sunlight and plays a very important role in plant biological processes. The use of ultraviolet irradiation can be a powerful tool for controlling pests and diseases of agricultural plants, as well as a tool for stimulating the synthesis of protective compounds, increasing the nutritional qualities and organoleptic properties of plants. Healthy meristem potato plants after transplantation into soil from in vitro conditions need optimal lighting conditions. In protected soil conditions, the use of additional ultraviolet irradiation of potato plants can significantly increase crop yield. To identify the optimal conditions for using this technique, it is necessary to study the reaction of different potato varieties to ultraviolet radiation. There has been studied the effect of UV-A (wave length is 360 nm, power density is 2.2 W/m2, time period between irradiation is 24 hours) for 10 days after transplanting regenerated plants of five potato varieties into soil. The effects on leaf area, over-ground and root parts, chlorophylls, carotenoid and proline content were investigated. Significant increase in aboveground biomass for ʻLuxʼ and ʻLegendaʼ varieties, root system mass for ʻLuxʼ and ʻAlyaskaʼ varieties, leaf area for ʻLuxʼ variety, proline content in ʻAlyaskaʼ, ʻIrbitskiyʼ, Terra varieties, and reliable decrease of photosynthetic pigments concentrations in the leaves of Legenda potato variety were revealed as affected by UVR. The results obtained correct the knowledge about the effect of UV-A on the growth and development of potato plants.

About the Authors

S. V. Shcherbyonok
Perm Agricultural Research Institute – Branch of Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences; Perm State Agro-Technological University named after academician D. N. Prianishnikov
Russian Federation

Sofiya V. Shcherbyonok, junior researcher; postgraduate

Kultury St., 12, Lobanovo, Perm district, Perm Region, 614532

October 25th st., 10, Perm, 614990



Т. N. Lisina
Perm Agricultural Research Institute – Branch of Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences
Russian Federation

Tatyana N. Lisina, PhD in Biological Science, Head of the Laboratory

Kultury St., 12, Lobanovo, Perm district, Perm Region, 614532



S. L. Eliseev
Perm State Agro-Technological University named after academician D. N. Prianishnikov
Russian Federation

Sergey L. Eliseev, DSc in Agricultural Science, professor at the Depart ment of Plant Growing

October 25th st., 10, Perm, 614990



A. L. Latypova
Perm Agricultural Research Institute – Branch of Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences
Russian Federation

Anna L. Latypova, researcher

Kultury St., 12, Lobanovo, Perm district, Perm Region, 614532



References

1. Sayapova M. G., Karpukhin M. Yu., Keyta F. The seed potatoes. Molodezh' i nauka = Youth and science. 2018;(7):54. (In Russ.). URL: https://elibrary.ru/item.asp?id=36489025

2. Lisina T. N., Dubasova Yu. A., Protasova E. M., Eliseeva A. D., Shcherbenok S. V. Experience in growing minitubers of three potato varieties in protected soil conditions. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta = Izvestia Orenburg State Agrarian University. 2024;(1(105)):44–49. (In Russ.). URL: https://elibrary.ru/item.asp?id=60786122

3. Belguendouz A., Kaide Harche M., Benmahioul B. Evaluation of different culture media and activated charcoal supply on yield and quality of potato microtubers grown in vitro. Journal of Plant Nutrition. 2021;44(14):2123–2137. DOI: https://doi.org/10.1080/01904167.2021.1881545

4. Mariz-Ponte N., Mendes R. J., Sario S., Melo P., Santos C. Moderate UV-A supplementation benefits tomato seed and seedling invigoration: A contribution to the use of UV in seed technology. Scientia Horticulturae. 2018;235:357–366. DOI: https://doi.org/10.1016/j.scienta.2018.03.025

5. Mariz-Ponte N., Martins S., Gonçalves A., Correia C. M., Ribeiro C., Dias M. C., Santos C. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae. 2019;246:777–784. DOI: https://doi.org/10.1016/j.scienta.2018.11.058

6. González-García Y., Escobar-Hernández D. I., Benavides-Mendoza A., Morales-Díaz A. B., OlivaresSáenz E., Juárez-Maldonado A. UV-A Radiation Stimulates Tolerance against Fusarium oxysporum f. sp. lycopersici in Tomato Plants. Horticulturae. 2023;9(4):499. DOI: https://doi.org/10.3390/horticulturae9040499

7. Escobar-Bravo R., Chen G., Kim H. K., Grosser K., van Dam N. M., Leiss K. A., Klinkhamer P. G. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. Journal of Experimental Botany. 2019;70(1):315–327. DOI: https://doi.org/10.1093/jxb/ery347

8. Santos I., Fidalgo F., Almeida J. M., Salema R. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science. 2004;167(4):925–935. DOI: https://doi.org/10.1016/j.plantsci.2004.05.035

9. Vyšniauskienė R., Rančelienė V. Effect of UV-B radiation on growth and antioxidative enzymes activity in Lithuanian potato (Solanum tuberosum L.) cultivars. Zemdirbyste-agriculture. 2014;101(1):51–56. DOI: https://doi.org/10.13080/z-a.2014.101.007

10. Gins M. S., Gambarova N. G. The activity of antioxidant system of red-colored plants of Amaranth during of short-term exposure in ultraviolet rays. Ovoshchi Rossii = Vegetable crops of Russia. 2009;(1):33–35. (In Russ.). DOI: https://doi.org/10.18619/2072-9146-2009-1-33-35

11. Lisina T. N., Burdysheva O. V., Sholgin E. S. Effect of different LEDs light spectrum on potato (Solanum tuberosum L.) in vitro (review). Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2023;24(6):913-923. (In Russ.). DOI: https://doi.org/10.30766/2072-9081.2023.24.6.913-92

12. Qi W., Ma J., Zhang J., Gui M., Li J., Zhang L. Effects of low doses of UV-B radiation supplementation on tuber quality in purple potato (Solanum tuberosum L.). Plant Signaling & Behavior. 2020;15(9). DOI: https://doi.org/10.1080/15592324.2020.1783490

13. Yanchevskaya T. G., Kovaleva O. A. Stimulation of morphological processes in meristemic potato plants (Solanum tuberosum L.) under the action of ultraviolet irradiation in the B-band. Fiziologiya rasteniy i genetika. 2015;47(4):287–295. (In Ukraine).

14. Lee J., Oh M., Son K. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. Frontiers in Plant Science. 2019;10:1042. DOI: https://doi.org/10.3389/fpls.2019.01042

15. Casal J. J. Photoreceptor signaling networks in plant responses to shade. Annual Reviews of Plant Biology. 2013;64:403–427. DOI: https://doi.org/10.1146/annurev-arplant-050312-120221

16. Verdaguer D., Jansen M. A., Llorens L., Morales L. O., Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science. 2017;255:72–81. DOI: https://doi.org/10.1016/j.plantsci.2016.11.014

17. Burdysheva O. V., Sholgin E. S., Ilyushin S. A., Remennikova M. V., Shcherbinina K. E., Lisina T. N. Development of a layout for an optical installation of an integrated action for processing agricultural seeds. Fotonekspress. 2023;(6(190)):31–32. (In Russ.). DOI: https://doi.org/10.24412/2308-6920-2023-6-31-32

18. Lobkov V. T., Napolova G. V. A method for determining chlorophyll in buckwheat plants: Patent RF no. 2244916, 2005. URL: https://www1.fips.ru/registers-doc-view/fips_servlet

19. Kang S., Zhang Y. T., Zhang Y. Q., Zou J., Yang Q. C., Li T. Ultraviolet-A radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) Seedlings. HortScience. 2018;53(10):1429–1433. DOI: https://doi.org/10.21273/HORTSCI13347-18

20. Polívka T., Frank H. A. Molecular factors controlling photosynthetic light harvesting by carotenoids. Accounts of Chemical Research. 2010;43(8):1125–1134. DOI: https://doi.org/10.1021/ar100030m

21. Myakisheva E. P., Sokolova G. G. The effect of light quality on the content of photosynthetic pigments in potato (Solanum tuberosum L.) in vitro. Izvestiya Altayskogo gosudarstvennogo universiteta = Izvestiya of Altai State University. 2014;(3-2):46–49. (In Russ.). DOI: https://doi.org/10.14258/izvasu(2014)3.2-08

22. Hossain M. A., Hoque M. A., Burritt D. J., Fujita M. Chapter 16 – Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. Oxidative Damage to Plants. Antioxidant Networks and Signaling. Academic Press is an imprint of Elsevier, 2014. pp. 477–522. DOI: https://doi.org/10.1016/B978-0-12-799963-0.00016-2

23. Bhuyan M. H. M. B., Hasanuzzaman M., Al Mahmud J., Hossain Md. Sh., Bhuiyan T. F., Fujita M. Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems. Plants. 2019;8(1):24. DOI: https://doi.org/10.3390/plants8010024

24. Kovaleva O. A. The effect of RF irradiation on pigment biosynthesis and photodynamic characteristics of variable fluorescence of the leaves of meristemic potato regenerants (Solanum tuberosum). Vestnik Natsional'noy akademii nauk Belarusi. Seriya biologicheskikh nauk. 2006;(5):85–88. (In Belarus). URL: http://elib.bspu.by/handle/doc/1801


Review

For citations:


Shcherbyonok S.V., Lisina Т.N., Eliseev S.L., Latypova A.L. The influence of UV-A on some morphometric and biochemical parameters of potato regenerate plants. Agricultural Science Euro-North-East. 2024;25(4):592–601. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.4.592-601

Views: 378


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)