The influence of genetic similarity, peroxidase activity and ascorbic acid content in the components of pumpkin crop grafts on their survival rate
https://doi.org/10.30766/2072-9081.2024.25.4.602-615
Abstract
Grafting of vegetable crops is widely used in industrial vegetable growing in Asia and Western Europe. However, the influence of the genetic relationship of the scion and rootstock, the activity of peroxidase and the content of ascorbic acid in the components of the graft during inosculation period on graft survival has been poorly studied. The objects of the research are nine species of the pumpkin family (Cucurbitaceae). The polymorphism of 11 taxa was studied based on ISSR-PCR of genomic DNA. The record of survival rate of scion-rootstock combinations was conducted on the 10-th day. The activity of peroxidase was determined by the spectrophotometric method, the content of ascorbic acid was determined by Murri. Significant differences in survival rate were noted when grafting momordica into pumpkin rootstock variants: large-fruited (94.6 %) and nutmeg (67.1 %). In experiments with watermelon, melon and trichosanthes, the influence of the type of rootstock on the viability of the graft was not revealed. According to the ISSR spectra, the taxa were divided into two clusters; interspecific groupings of each clade were supported by average bootstrap values (from 26 to 100 %). A medium effect (r = 0.36) of the degree of genetic similarity of the scion with the rootstock on the survival rate of watermelon and a weak effect on the survival rate of melon, momordica and trichosanthes were revealed. The activity of peroxidase and the content of ascorbic acid in the grafting components in different scionrootstock combinations had a weak and moderate effect on plant survival, respectively. The survival rate of trichosanthes on various types of rootstocks strongly depended on the content of ascorbic acid (r = 0.7). Genetic relatedness, peroxidase activity, and ascorbic acid content had a weak or moderate effect on the survival rate of plants in scion-rootstock combinations.
About the Authors
S. А. MusikhinRussian Federation
Sergey A. Musikhin, PhD in Agricultural Science, researcher
st. Tatyana Baramzina, 34, Izhevsk, Udmurt Republic, 426067
D. A. Zorin
Russian Federation
Denis A. Zorin, PhD in Biological Science, researcher
st. Tatyana Baramzina, 34, Izhevsk, Udmurt Republic, 426067
A. V. Khudyakova
Russian Federation
Anna V. Khudyakova, PhD in Biological Science, researcher
st. Tatyana Baramzina, 34, Izhevsk, Udmurt Republic, 426067
References
1. Lebedeva S. P. The introduction of melon culture in the northern regions of the USSR. Moscow: Sel'khozgiz, 1944. p. 64. URL: https://search.rsl.ru/ru/record/01005354062?ysclid=ltmpjevsft685488377
2. Lebedeva S. P. Pumpkin transplantation experiments. Trudy po prikladnoy botanike, genetike i selektsii = Proceedings on Applied Botany, Genetics and Breeding. 1930:23(3):521–532. (In Russ.).
3. Lebedeva S. P. Transplantation in pumpkin plants. Sad i ogorod. 1937;(6):9–15. (In Russ.).
4. Georgiev Khr. Inoculation of greenhouse crops on sustainable rootstocks: industrial production of vegetables in greenhouses. Moscow, Sofiya: Kolos, Zemizdat, 1977. pp. 152–156.
5. Traka-Mavrona E., Koutsika-Sotiriou M., Pritsa T. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae. 2000;83(3-4):353–362. DOI: https://doi.org/10.1016/s0304-4238(99)00088-6
6. Karataev E. S., Borak Sikham S. The growth and development of cucumber plants grafted on pumpkin. The use of growth regulators and film materials in vegetable growing: collection of articles of Leningrad Agricultural Institute. Leningrad, 1986. pp. 60–65.
7. Modestov A. P. Transplantation in crop production. Moscow: Tsikologich. stantsiya VASKhNIL, 1932. pp. 35.
8. Iwasaki M., Inaba T. Effect of Different Cucurbit Rootstocks on Incidence of Viral Wilt in Grafted Cucumber Plants. Japanese Journal of Phytopathology. 1990;56(5):674–676. DOI: https://doi.org/10.3186/jjphytopath.56.674
9. Jung-Myng Lee. Cultivation of Grafted Vegetables I. Current Status, Grafting Methods, and Benefits. HortScience. 1994;29(4):235–239. DOI: https://doi.org/10.21273/HORTSCI.29.4.235
10. Oda M. New grafting methods for fruit–bearing vegetables in Japan. Japan Agricultural Research Quarterly. 1995;(2):187–198. URL: https://www.semanticscholar.org/paper/New-grafting-methods-for-fruit-bearing-vegetablesOda/aa18182ab7d9fc1c8d39c00bcf7b52145bbd462f
11. Fedorov A. V., Ardasheva O. A. Biological and technological bases of inoculation application in the cultivation of pumpkin crops in protected ground structures. Izhevsk: «Shelest», 2017. pp. 222–257.
12. Fedorov A. V., Tutova T. N., Paponov A. N., The use of vaccinations and physiologically active substances in cucumber cultivation: monograph. Izhevsk: Izhevskaya GSKhA, 2006. pp. 113.
13. Musikhin S. A., Fedorov A. V., Ardasheva O. A. Dynamics of peroxidase activity in the main phases of development in Trichosanthes cucumerina L. plants when grafting on different types of Cucurbita rootstocks. Permskiy agrarnyy vestnik = Perm Agrarian Journal. 2021;(4(36)):59–65. (In Russ.). DOI: https://doi.org/10.47737/2307-2873_2021_36_59
14. Musikhin S. A., Fedorov A. V., Ardasheva O. A. Results of introduction of Momordica charantia L. when grafting on pumpkin varieties in the conditions of the middle Cis-Ural region. Vestnik Ul'yanovskoy gosudarstvennoy sel'skokhozyaystvennoy akademii = Vestnik of Ulyanovsk state agricultural academy. 2021;(1(53)):112–116. (In Russ.). DOI: https://doi.org/10.18286/1816-4501-2021-1-112-116
15. Kruzhilin A. S. The physiology of inosculation and mutual influence of the scion and rootstock of plants. Physiology of agricultural plants. Moscow: izd-vo MGU, 1968. 272 p. URL: https://search.rsl.ru/ru/record/01006231203?ysclid=ltmpo3zt6u998041555
16. Krenke N. P. Plant transplantation. Moscow: Nauka, 1966. pp. 337. URL: https://reallib.org/reader?file=1426957&ysclid=ltmiy2dcsb546114568
17. Chesnokov Yu. V. Genetic markers: comparative classification of molecular markers. Ovoshchi Rossii = Vegetable crops of Russia. 2018;(3(41)):11–15. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=35295161
18. Ilnitskaya E. T., Makarkina M. V., Stepanov I. V., Suprun I. I., Tokmakov S. V., Ayba V. Sh., Avidzba M. A., Kotlyar V. K. Genetic polymorphism of local abkhazian grape cultivars. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2021;(25(8)):797–804. (In Russ.). DOI: https://doi.org/10.18699/VJ21.092
19. Kanukova K. R., Gazaev I. Kh., Sabanchieva L. K., Bogotova Z. I., Appaev S. P. DNA markers in crop production. Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN = Izvestia of Kabardino-Balkarian State Agrarian University named after V. M. Kokov. 2019;(6(92)):220–232. (In Russ.). DOI: https://doi.org/10.35330/1991-6639-2019-6-92-220-232
20. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20(2):176–183. DOI: https://doi.org/10.1006/geno.1994.1151
21. Sukhareva A. S., Kuluev B. R. DNA markers for genetic analysis of crops. Biomika = Biomics. 2018;10(1):069–084. (In Russ.). DOI: https://doi.org/10.31301/2221-6197.bmcs.2018-15
22. Guliyev N., Sharifova S., Ojaghi J., Abbasov M., Akparov Z. Genetic diversity among melon (Cucumis melo L.) accessions revealed by morphological traits and ISSR markers. Turkish Journal of Agriculture and Forestry. 2018;42(6):393–401. DOI: https://doi.org/10.3906/tar-1707-18
23. Singh D. K., Rajni Tewari, Singh N. K., Shanshank Singh S. Genetic Diversity Cucumber Using Inter Simple Sequence Repeats (ISSR). Transcriptomics. 2016;4(1):1000129. DOI: https://doi.org/10.4172/2329-8936.1000129
24. Henareh M., Dursun A., Abdollahi Mandoulakani B., Haliloğlu K. Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika. 2016;48(1):25–35. DOI: https://doi.org/10.2298/GENSR1601025H
25. Onamu R., Legaria J., Rodríguez J. L., Sahagùn J., Pèrez J. Molecular characterization of potato (Solanum tuberosum L.) genotypes using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology. 2016;15(22):1015–1025. DOI: https://doi.org/10.5897/AJB11.2656
26. Rogers S. O., Bendich A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology. 1985;5(2):69–76. DOI: https://doi.org/10.1007/bf00020088
27. Cota-Sánchez J. H., Remarchuk K., Ubayasena K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter. 2006;24(2):161–167. DOI: https://doi.org/10.1007/BF02914055
28. Boronnikova S. V., Kokaeva Z. G., Gostimskiy S. A., Dribnokhodova O. P., Tikhomirova N. N. Analysis of DNA polymorphism in a relict uralian species, large-flowered foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika = Russian Journal of Genetics. 2007;43(5):653–659. (In Russ.). URL: https://elibrary.ru/item.asp?id=9535705
29. Payel D., Mala P., Sunita S. Inter-genus variation analysis in few members of Cucurbitaceae based on ISSR markers. Biotechnology and Biotechnological Equipment. 2015;29(5):882–886. DOI: https://doi.org/10.1080/13102818.2015.1052760
30. Chesnokov Yu. V., Artemeva A. M. Evaluation of the measure of polymorphism information of genetic diversity. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2015;50(5):571–578. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2015.5.571rus
31. Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics. 1994;10(5):569–570. DOI: https://doi.org/10.1093/bioinformatics/10.5.569
32. Akash M., Awad N., Kasrawi M. Genetic diversity among snake melon landraces (Cucumis Melo Var. Flexuosus) using molecular descriptors. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology. 2020;154(2):206–212. DOI: https://doi.org/10.1080/11263504.2019.1587536
33. Pratami M. P., Chikmawati T., Rugayah. Genetic diversity of Cucumis and Mukia (Cucurbitaceae) based on ISSR markers. SABRAO Journal of Breeding and Genetics. 2020;52(2):127–143. URL: https://sabraojournal.org/wp-content/uploads/2020/06/SABRAO-J-Breed-Genet-522-127-143Pratami.pdf
34. Nei M., Li W. H. Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 1979;76(10):5269–5273. DOI: https://doi.org/10.1073/pnas.76.10.5269
35. Timofeev M. A., Shatilina Zh. M., Bedulina D. S., Protopopova M. V., Grabel'nykh O. I., Pobezhimova T. P., Kolesnichenko A. V. Comparison of stress proteins participation in adaptation mechanisms of Baikalian and palearctic amphipod species. Zhurnal stress-fiziologii i biokhimii = Journal of Stress Physiology & Biochemistry. 2006;2(1):41–50. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=11715841
Review
For citations:
Musikhin S.А., Zorin D.A., Khudyakova A.V. The influence of genetic similarity, peroxidase activity and ascorbic acid content in the components of pumpkin crop grafts on their survival rate. Agricultural Science Euro-North-East. 2024;25(4):602–615. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.4.602-615