Preview

Agricultural Science Euro-North-East

Advanced search

Resistance of flax gene pool samples to edaphic stress caused by low acidity

https://doi.org/10.30766/2072-9081.2020.21.2.133-140

Abstract

In conditions of vegetative trial carried out against selective backgrounds in 2017-2019 the response of 27 flax samples to a decrease in soil acidity to neutral pHKCl was studied. The scheme of the experiment was as follows: variant I (control) − pHKCl 5.3-5.5, P2O5 − 320-340 mg/kg, K2O − 81-92 mg/kg; variant II − pHKCl 6.2, P2O5 − 312-345 mg/kg, K2O − 84-98 mg/kg. It has been shown that during the «herringbone» phase in the majority of studied flax genotypes against the background of pH 6.2, the symptoms of “physiological oppression” of flax were observed: small spots developed on the upper leaves, the plants stopped growing, the stems thickened, and the tops of severely affected plants died off. As a result, at the beginning of the growing season at plant height of 7-10 cm, most of the samples were severely affected (from 69 to 100 %). The exceptions were varieties of fibre-flax Hermes (France), Vega 2 (Lithuania), Atlant (Russia) and linseed genotypes No. 3896 (Russia) and Norlin (Canada), which had a weak and medium degree of affection (8.3-45.5 %). Moreover, these genotypes showed a high level of both biological (75-90 %) and agronomic (77.3-85.6 %) resistance in the phase of "early yellow ripeness". The identified flax collection samples can be used as sources of resistance to flax «physiological oppression» caused by stressful edaphic factors in a neutral environment. On the basis of the analysis of the main elements of fiber productivity in studied flax genotypes, it has been established that against the background of pH 6.2 the reduce in plant height was from 11.4 to 52.1 % relative to the control, weight of the technical part of the stem − from 7.2 to 83.4 % , fiber mass − from 9.6 to 85.1 %. For the first time, on the basis of hybridological analysis, an assumption was done as to the pres-ence of a strong dominant gene, controlling the resistance to high soil pH values in the Hermes (France) flax variety and the linseed line No. 3896 (Russia).

About the Authors

T. A. Rozhmina
Federal Research Center for Bast Fiber Crops
Russian Federation

Tatiana A. Rozhmina, DSc in Biology, head of the laboratory

Lunacharsky St., 35, Torzhok, Russian Federaton, 172002



A. A. Zhuchenko Jr.
Federal Research Center for Bast Fiber Crops
Russian Federation

Alexander A. Zhuchenko Jr., academician of the Russian Academy of Sciences, chief researcher

Lunacharsky St., 35, Torzhok, Russian Federaton, 172002



N. V. Melnikova
Engelhardt Institute of Molecular Biology of Russian Academy of Science
Russian Federation

Nataliya V. Melnikova, PhD in Biology, senior researcher

Vavilov St., 32, GCP-1, Moscow, Russian Federaton, 119991



A. D. Smirnova
Federal Research Center for Bast Fiber Crops
Russian Federation

Anzhela D. Smirnova, postgraduate student

Komsomolsky Avenue, 17/56, Tver, Russian Federaton, 1700002



References

1. Jhala A. J., Hall L. M. Flax (Linum usitatissimum L.): current uses and future applications. Aust J Basic Appl Sci. 2010;4(9):4304-12. URL: http://ajbasweb.com/old/ajbas/2010/4304-4312.pdf

2. Zhuchenko A. A. Adaptivnyy potentsial kul'turnykh rasteniy (ekologo-geneticheskie aspekty). [Adaptive poten-tial of cultivated plants (ecological and genetic aspects)]. Vol. I, II. Moscow: OOO «Izdatel'stvo Agrorus», 2001. 1489 p.

3. Sorokina O. Yu., Nechushkin S. M. Rol' kationov kal'tsiya, magniya i kislotnosti pochvy v produktivnosti l'na-dolguntsa. [Role of calcium and magnesium cations and soil acidity in the yielding capacity of fiber flax]. Agrokhimiya. 2005;(10):13-17. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=9152141

4. Ricachenevsky F. K., Menguer P. K., Sperotto R. A., Fett J. P. Got to hide your Zn away: molecular control of Zn ac-cumulation and biotechnological applications. Plant Sci. 2015;236:1-17. DOI: https://doi.org/10.1016/j.plantsci.2015.03.009

5. Sinclair S. A., Kramer U. The zinc homeostasis network of land plants. Biochim Biophys Acta. 2012;1823(9):1553–67. DOI: https://doi.org/10.1016/j.bbamcr.2012.05.016

6. Yu Y., Wu G., Yuan H., Cheng L., Zhao D., Huang W., Zhang S., Zhang L., Chen H., Zhang J., Guan F. Identifi-cation and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol. 2016;16(1):124. DOI: https://doi.org/10.1186/s12870-016-0808-2

7. Melnikova N. V., Dmitriev A. A., Belenikin M. S., Speranskaya A. S., Krinitsina A. A., Rachinskaia O. A., Lakunina V. A., Krasnov G. S., Snezhkina A. V., Sadritdinova A. F., Uroshlev L. A., Koroban N. V., Samatadze T. E., Amosova A. V., Zelenin A. V., Muravenko O. V., Bolsheva N. L., Kudryavtseva A. V. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L. Biochimie. 2015;109:36-41. DOI: https://doi.org/10.1016/j.biochi.2014.11.017

8. Tikhomirova V. Ya., Belova V. M. Agrokhimicheskie i mikrobiologicheskie svoystva pochvy v ochagakh fiziologicheskogo ugneteniya l'na-dolguntsa. [Agrochemical and microbiological properties of the soil in the foci of physi-ological oppression of fiber flax]. Vestnik RASKhN. 1994;(6):30-32. (In Russ.).

9. Prudnikov V. A. Reaktsiya kul'tury l'na-dolguntsa na plodorodie pochvy. [Fiber flax culture reaction to soil fertility]. Zemledelie i zashchita rasteniy. Prilozhenie k zhurnalu. 2017;(4):21-23. (In Belarus).

10. Kishlyan N. V., Rozhmina T. A. Otsenka genofonda l'na kul'turnogo (Linum usitatissimum L.) po kislotoustoychivosti. [Investigathion of flax (Linum usitatissimum L.) gene pool on resistance to soil acidity]. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2010;(1):96-103. (In Russ.). URL: http://www.agrobiology.ru/1-2010kishlyan.html

11. Goncharova E. A. Izuchenie ustoychivosti i adaptatsii kul'turnykh rasteniy k abioticheskim stressam na baze mirovoy kollektsii geneticheskikh resursov: Nauchnoe nasledie professora G. V. Udovenko. [The study of the resistance and adaptation of cultivated plants to abiotic stresses based on the global collection of genetic resources: Scientific heritage of Professor G. V. Udovenko]. Pod red. akademika A. A. Zhuchenko. Saint Petersburg: GNU VIR, 2011. 336 p.

12. Metcalfe D. R., Helgason S. B. Inheritance of looce smit resistance. Canad. Of Plant Science. 1962;42(3):472-480.

13. Rybas' I. A. Povyshenie adaptivnosti v selektsii zernovykh kul'tur (obzor). [Breeding grain crops to increase adaptability (review)]. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2016;(5):617-626. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2016.5.617rus

14. Lykova N. A. Adaptivnost' zlakov v svyazi s usileniyami prevegetatsii i vegetatsii. [Adaptability in cereals (poaceae) in connection with prevegetation and vegetation conditions]. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2008;(1):48-54. (In Russ.). URL: http://agrobiology.ru/articles/lykova.html


Review

For citations:


Rozhmina T.A., Zhuchenko Jr. A.A., Melnikova N.V., Smirnova A.D. Resistance of flax gene pool samples to edaphic stress caused by low acidity. Agricultural Science Euro-North-East. 2020;21(2):133-140. (In Russ.) https://doi.org/10.30766/2072-9081.2020.21.2.133-140

Views: 719


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)