The effect of manganese(II) excess on growth and antioxidant status of barley seedlings
https://doi.org/10.30766/2072-9081.2020.21.4.369-378
Abstract
Manganese belongs to the group of heavy metals, which at high concentrations can have a negative effect on plant development. Typical soils of the Kirov region are acid podzolic and sod-podzolic soils, which are characterized by high content of manganese compounds available for plants. Studied was the effect of manganese(II) ions at the concentrations of 30.0, 60.0 and 90.0 mg/l on the growth and antioxidant activity (AOA) of the superoxide dismutase enzyme (SOD) in the organs of 7 and 14-day-old barley plants grown in aquatic culture. Varieties and forms of barley 346-09, 29-11, Farmer 198-12, Forward and Bionik, resistant to acidic soils (Al3 +, H+) served as objects for the research; Belgorodskij 100 variety was used as standard. When manganese was added to the solution for growing, a decrease in root length and an increase in AOA of SOD in plant roots were noted. It was concluded that increased concentrations of manganese had an effect on the morphometric parameters and on AOA SOD of barley seedlings. It has been established that increasing the dose of manganese in the solution for growing leads to a decrease in the length of the roots. AOA SOD varied in different organs of plants of some varieties, and its more significant change in the experiment compared with the control was revealed in the roots. Judging by morphometric indicators, the Belgorodskij 100 variety was the least resistant to Mn2+ ionic toxicity, the root length of which in the control was 15.7±0.4 cm, and in the experiment 13.2±0.3; 12.2±0.1; 11.5±0.3 cm in accordance with the dose of manganese 30, 60 and 90 mg / l. According to the level of AOA SOD, the most sensitive variety was Farmer 198-12, its change of AOA SOD in the roots (% of control) was 158.8; 167.2 and 169.4% in accordance with the dose of manganese 30.0; 60.0 and 90.0 mg / l (AOA SOD in the control was 52.4±0.4%; in the experiment 83.2±2.2; 87.6±2.0 and 88.7±0.6, respectively), and in the shoots ˗ 121.0; 128.3 and 125.6 %, respectively (66.7±7.9 % in the control and 80.7±0.5; 85.6±1.4; 83.8±0.6 % in the experiment in accordance with the dose of Mn 2+).
Keywords
About the Authors
O. A. SimonovaRussian Federation
Оlga А. Simonova, PhD in Agricultural science, researcher, the Department of Edaphic Plant Resistance
Lenin St., 166a, Kirov, 610007
M. V. Simonov
Russian Federation
Мaksim V. Simonov, PhD in Engineering, associate professor, the Chair of Engineering Technology
Moskovskaya St., 36, Kirov, 610000
E. V. Tovstik
Russian Federation
Еvgeniya V. Тоvstiк, PhD in Biology, senior researcher, the Center of Competence “Environmental Technologies and Systems”, associate professor at the Department of Basic Chemistry and Chemistry Training Methodology
Moskovskaya St., 36, Kirov, 610000
References
1. Schmidt S. B., Jensen P. E., Husted S. Manganese Deficiency in Plants: The Impact on Photosystem II. Trends in Plant Science. 2016; 21(7): 622-632. DOI: https://doi.org/10.1016/j.tplants.2016.03.001
2. Shikhova L. N., Egoshina T. L. Tyazhelye metally v pochvakh i rasteniyakh Severo-Vostoka evropeyskoy chasti Rossii. [Heavy metals in soils and plants of the North-East of the European part of Russia]. Kirov: Zonal'nyy NIISKh Severo-Vostoka, 2004. 264 p.
3. Pugaev S. V. Geokhimicheskoe rayonirovanie pakhotnykh pochv respubliki Mordoviya po soderzhaniyu tyazhelykh metallov. [Geochemical zoning of arable soils in Mordovia according to heavy metal contents]. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2015;(29(3)):28-32. (In Russ.). URL: https://elibrary.ru/item.asp?id=23200166
4. Millaleo R., Reyes-Díaz M., Ivanov A. G, Mora M. L., Alberdi M. Mn as essential and toxic element for plants: transport, accumulation and re-sistance mechanisms. J. Soil Sci. Plant Nutr. 2010;10(4):476-494. DOI: http://dx.doi.org/10.4067/S0718-95162010000200008
5. Santos E. F., Kondo Santini J. M., Paixão A. P., Júnior E. F., Lavres J., Campos M., Reis A. R. Dos. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiology and Biochemistry. 2017;113:6-19. DOI: https://doi.org/10.1016/j.plaphy.2017.01.022
6. Zhou G., Delhaize E., Zhou M., Ryan P. R. Biotechnological Solutions for Enhancing the Aluminium Resistance of Crop Plants. Abiotic Stress in Plants – Mechanisms and Adaptations. 2011. pp. 119-142.
7. Cox W., Levitt Y. Interrelations between environmental factors and resistance of cabbage leaves. Plant Phisiol. 1976;57(4):553-555.
8. Yost R. S. Plant Tolerance of Low Soil pH, Soil Aluminum, and Soil Manganese. Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, 2000. Chapter 11. pp. 113-115. URL: https://www.ctahr.hawaii.edu
9. Shchupletsova O. N., Shirokikh I. G. Povyshenie ustoychivosti yachmenya k toksichnosti metallov i osmoticheskomu stressu putem kletochnoy selektsii. [Increasing the resistance of barley to metal toxicity and osmotic stress by cell selection]. Zernovoe khozyaystvo Rossi = Grain Economy of Russia. 2015;(1):57-62. (In Russ.). URL: https://elibrary.ru/item.asp?id=22994658
10. Lisitsyn E. M. Pokazateli razvitiya kornevykh sistem v edaficheskoy selektsii yachmenya. [Indexes of root system development for barley edaphic breeding]. Zernobobovye i krupyanye kul'tury = Legumes and groat crops. 2018; (2 (26)): 66-71. (In Russ.). DOI: https://doi.org/10.24411/2309-348Kh-2018-10019
11. Zagoskina N. V., Nazarenko L. V. Aktivnye formy kisloroda i antioksidantnaya sistema rasteniy. [Active oxygen species and antioxidant system of plants]. Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta = Vestnik of Moscow City Teachers Training University. Seriya «Estestvennye nauki». 2016;(2 (22)):9-23. (In Russ.). URL: https://elibrary.ru/item.asp?id=26125309
12. Zelenkov V. N., Markov M. V., Lapin A. A. Antioksidantnyy status rasteniy, vyyavlennyy pri izuchenii ekosistem Tambovskoy oblasti. [Antioxidant status of plants revealed in the study of ecosystems of the Tambov region]. Ekologicheskie aspekty zhiznedeyatel'nosti cheloveka, zhivotnykh i rasteniy: monografiya. [Environmental aspects of human, animal and plant life: monograph.]. Belgorod: ID «Belgorod» NIU «BelGU», 2017. pp. 177-195.
13. Navacode S., Weidner A., Varshney R. K., Lohwasser U., Scholz U., Roder M. S., Borner A. A genetic analysis of aluminium tolerance in cereals. Agric. Conspec. Sci. 2010; 75 (4): 191-196. URL: https://hrcak.srce.hr/66006
14. Kaznina N. M., Batova Yu. V., Titov A. F., Laydinen G. F. Rol' otdel'nykh komponentov antioksidantnoy sistemy v adaptatsii rasteniy Elytrigia repens (L.) Nevski k kadmiyu. [Role of individual components of the antioxidant system in the adaptation of Elytrigia repens (L.) Nevski plants to cadmium]. Trudy Karel'skogo nauchnogo tsentra RAN = Transactions of the Karelian Research Centre of the Russian Academy of Sciences. 2016;(11):17-26. (In Russ.). DOI: https://doi.org/10.17076/eb365
15. Li P., Song A., Li Z., Fan F., Liang Y. Silicon ameliorates manga-nese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil. 2012; (354): 407-419. DOI: https://doi.org/10.1007/s11104-011-1076-4
16. Zhou C. P., Qi Y. P., You X., Yang L. T., Guo P., Ye X., Zhou X. X., Ke F. J., Chen L. S. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity BMC Genomics. 2013; (14:621): 1-19. URL: http://www.biomedcentral.com/1471-2164/14/621
17. Rezai K., Farboodnia T. Manganase Toxicity Effects on Chloro-phyll Content and Antioxidant Enzymes in Pea Plant (Pisum sativum L. c. v. qazvin). Agricultural Journal. 2008; (3(6)): 454-458. URL: http://docsdrive.com/pdfs/medwelljournals/aj/2008/454-458.pdf
18. Foyer C. H., Lopez-Delgado H., Dat J. F., Scott I. M. Hydrogen peroxide- and glutathioneassosiated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant. 1997;100:241 -254. DOI: https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
19. Iannone M. F., Rosales E. P., Groppa M. D., Benavides M. P. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma. 2010;245:15-27. DOI: https://doi.org/10.1007/s00709-009-0097-9
20. Pishchik V. N., Vorob'ev N. I., Provorov N. A., Khomyakov Yu. V. Mekhanizmy adaptatsii rasteniy k tyazhelym metallam. [Mechanisms of plant adaptation to heavy metals]. Agrofizika. 2015;(2):38-49. (In Russ.). URL: https://elibrary.ru/item.asp?id=23710052
Review
For citations:
Simonova O.A., Simonov M.V., Tovstik E.V. The effect of manganese(II) excess on growth and antioxidant status of barley seedlings. Agricultural Science Euro-North-East. 2020;21(4):369-378. (In Russ.) https://doi.org/10.30766/2072-9081.2020.21.4.369-378