Preview

Agricultural Science Euro-North-East

Advanced search

Physical methods of mycotoxin content reduction in feeds and application of them in the compound feed industry (review)

https://doi.org/10.30766/2072-9081.2021.22.1.32-46

Abstract

The review considers the problems of mycotoxin content reduction in feed using physical methods and application of these methods when producing compound feeds. The analysis of scientific publications on the topic under research has shown that physical methods of lowering mycotoxin content in feed are rather effective. These methods include cleaning and sorting of raw materials, grain husking, grain refining with removal of outer layers of grain, heating, extrusion, the effect of non-ionizing and ionizing radiation and cold plasma. Thermal methods (heating and extrusion) and ionizing radiation (gamma-radiation and electron beam) are most effective for a mycotoxin content reduction in feed. The new method of feed detoxication by cold plasma is perspective, but requires additional research. To make the removal of mycotoxins fully complete it is more efficient to combine different physical methods, namely cleaning and sorting at the preliminary stage and heating or irradiation at the final stage. But before applying physical methods into the compound feed industry the rational parameters of their execution should be determined and optimum combinations of different methods for certain mycotoxins should be specified. The subject area of mycotoxin content reduction in feed using physical methods is perspective, but requires carrying out additional research.

About the Authors

S. V. Braginets
Agricultural Research Center Donskoy
Russian Federation

Sergey V. Braginets, PhD in Engineering, leading researcher, the Department of Vegetable Feedstock Processing

14 Lenin St., Zernograd, Rostov Region, 347740, e-mail: vniizk30@mail.ru



O. N. Bakhchevnikov
Agricultural Research Center Donskoy
Russian Federation

Oleg N. Bakhchevnikov, PhD in Engineering, researcher, the Department of Vegetable Feedstock Processing

14 Lenin St., Zernograd, Rostov Region, 347740, e-mail: vniizk30@mail.ru



References

1. Haque M. A., Wang Y., Shen Z., Li X., Saleemi M. K., He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis. 2020;142:104095. DOI: http://doi.org/10.1016/j.micpath.2020.104095

2. Abdallah M. F., Girgin G., Baydar T. Occurrence, prevention and limitation of mycotoxins in feeds. Animal Nutrition and Feed Technology. 2015;15(3):471-490. DOI: http://doi.org/10.5958/0974-181x.2015.00048.7

3. Yang C., Song G., Lim W. Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials. 2020;389:122087. DOI: http://doi.org/10.1016/j.jhazmat.2020.122087

4. Magnoli A. P., Poloni V. L., Cavaglieri L. Impact of mycotoxin contamination in the animal feed industry. Current Opinion in Food Science. 2019;29:99-108. DOI: http://doi.org/10.1016/j.cofs.2019.08.009

5. Kononenko G. P., Burkin A. A., Zotova E. V. Mikotoksikologicheskiy monitoring. Soobshchenie 2. Zerno pshenitsy, yachmenya, ovsa, kukuruzy. [Mycotoxilogical monitoring. Part 2. Wheat, barley, oat and maize grain]. Veterinariya segodnya = Veterinary Science Today. 2020;2:139-145. (In Russ.). DOI: http://doi.org/10.29326/2304-196X-2020-2-33-139-145

6. Bryden W. L. Mycotoxin contamination of the feed supply chain. Implications for animal productivity and feed security. Animal Feed Science and Technology. 2012;173(1-2):134-158. DOI: http://doi.org/10.1016/j.anifeedsci.2011.12.014

7. Richard J. L. Some major mycotoxins and their mycotoxicoses – an overview. International Journal of Food Microbiology. 2007;119(1-2):3-10. DOI: http://doi.org/10.1016/j.ijfoodmicro.2007.07.019

8. Kononenko G. P., Burkin A. A., Zotova E. V. Mikotoksikologicheskiy monitoring. Soobshchenie 1. Polnoratsionnye kombikorma dlya sviney i ptitsy (2009-2018 gg.). [Mycotoxicological monitoring. Part 1. Complete mixed feed for pigs and poultry (2009–2018)]. Veterinariya segodnya = Veterinary Science Today. 2020;(1):60-65. (In Russ.). DOI: http://doi.org/10.29326/2304-196X-2020-1-32-60-65

9. Kononenko G. P., Burkin A. A., Zotova E. V. Mikotoksikologicheskiy monitoring. Soobshchenie 3. Kormovaya produktsiya ot pererabotki zernovogo syr'ya. [Mycotoxicological monitoring. Part 3. Feedstuffs from raw grain processing]. Veterinariya segodnya = Veterinary Science Today. 2020;(3):213-219. (In Russ.). DOI: http://doi.org/10.29326/2304-196X-2020-3-34-213-219

10. Drobin Yu. D., Soldatenko N. A., Sukhikh E. A., Kovalenko A. V. Itogi monitoringa kontaminatsii furazhnogo zerna pshenitsy, yachmenya i kukuruzy na yuge Rossii. [Results of monitoring of contamination of wheat, barley and corn fodder grain on the south of Russia]. Rossiyskiy zhurnal «Problemy veterinarnoy sanitarii, gigieny i ekologii» = The Russian journal «Problems of Veterinary Sanitation, Hygiene and Ecology». 2015;4:27-30. (In Russ.). URL: https://elibrary.ru/item.asp?id=25020727

11. Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Duragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-contaminated feedstuffs and compound feed. Toxins. 2019;11(11):617. DOI: http://doi.org/10.3390/toxins11110617

12. Peng W-X., Marchal J. L. M., van der Poel A. F. B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology. 2018;237:129-153. DOI: https://doi.org/10.1016/j.anifeedsci.2018.01.017

13. Oliveira M., Vasconcelos V. Occurrence of mycotoxins in fish feed and its effects – a review. Toxins. 2020;12(3):160. DOI: http://doi.org/10.3390/toxins12030160

14. Luo Y., Liu X., Li J. Updating techniques on controlling mycotoxins – A review. Food Control. 2018;89:123-132. DOI: http://doi.org/10.1016/j.foodcont.2018.01.016

15. Jard G., Liboz T., Mathieu F., Guyonvarc’h A., Lebrihi A. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A. 2011;28(11):1590-1609. DOI: http://doi.org/10.1080/19440049.2011.595377

16. Popova S. A., Skoptsova T. I., Losyakova E. V. Mikotoksiny v kormakh: prichiny, posledstviya, profilaktika. [Mycotoxins in feeds: reasons, consequences, prevention]. Izvestiya Velikolukskoy gosudarstvennoy sel'skokhozyaystvennoy akademii. 2017;(1):16-23. (In Russ.). URL: https://cyberleninka.ru/article/n/17966566

17. Alberts J. F., Lilly M., Rheeder J. P., Burger H-M., Shephard G. S., Gelderblom W. C. A. Technological and community-based methods to reduce mycotoxin exposure. Food Control. 2017;73:101-109. DOI: https://doi.org/10.1016/j.foodcont.2016.05.029

18. Kabak B., Dobson A. D. W., Var I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition. 2006;46(8):593-619. DOI: https://doi.org/10.1080/10408390500436185

19. Jouany J. P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology. 2007;137(3-4):342-362. DOI: https://doi.org/10.1016/j.anifeedsci.2007.06.009

20. Torraco R. J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review. 2016;15(4):404-428. DOI: http://dx.doi.org/10.1177/1534484316671606

21. Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems. 2015;37:879-910. DOI: http://dx.doi.org/10.17705/1cais.03743

22. Afolabi C. G., Bandyopadhyay R., Leslie J. F., Ekpo E. J. A. Effect of sorting on incidence and occurrence of fumonisins and Fusarium verticillioides on maize from Nigeria. Journal of Food Protection. 2006;69(8):2019-2023. DOI: https://doi.org/10.4315/0362-028x-69.8.2019

23. Visconti A., Haidukowski E. M., Pascale M., Silvestri M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicology Letters. 2004;153(1):181-189. DOI: https://doi.org/10.1016/j.toxlet.2004.04.032

24. Matumba L., Van Poucke C., Ediage E. N., Jacobs B., De Saeger S. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Additives & Contaminants: Part A. 2015;32(6):960-969. DOI: https://doi.org/10.1080/19440049.2015.1029535

25. Van der Westhuizen L., Shephard G. S., Rheeder J. P., Burger H. M., Gelderblom W. C. A., Wild C. P., Gong Y. Y. Optimising sorting and washing of home-grown maize to reduce fumonisin contamination under laboratory-controlled conditions. Food Control. 2011;22(3-4):396-400. DOI: https://doi.org/10.1016/j.foodcont.2010.09.009

26. Tibola C. S., Fernandes J. M. C., Guarienti E. M. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control. 2016;60:174-179. DOI: https://doi.org/10.1016/j.foodcont.2015.07.031

27. Schwake-Anduschus C., Langenkämper G., Unbehend G., Dietrich R., Märtlbauer E., Münzing K. Occurrence of Fusarium T-2 and HT-2 toxins in oats from cultivar studies in Germany and degradation of the toxins during grain cleaning treatment and food processing. Food Additives & Contaminants: Part A. 2010;27(9):1253-1260. DOI: https://doi.org/10.1080/19440049.2010.487499

28. Lancova K., Hajslova J., Kostelanska M., Kohoutkova J., Nedelnik J., Moravcova H., Vanova M. Fate of trichothecene mycotoxins during the processing milling and baking. Food Additives & Contaminants: Part A. 2008;25(5):650-659. DOI: https://doi.org/10.1080/02652030701660536

29. Rios G., Pinson-Gadais L., Abecassis J., Zakhia-Rozis N., Lullien-Pellerin V. Assessment of dehulling efficiency to reduce deoxynivalenol and Fusarium level in durum wheat grains. Journal of Cereal Science. 2009;49(3):387-392. DOI: https://doi.org/10.1016/j.jcs.2009.01.003

30. Siwela A. H., Siwela M., Matindi G., Dube S., Nziramasanga N. Decontamination of aflatoxin-contaminated maize by dehulling. Journal of the Science of Food and Agriculture. 2005;85(15):2535-2538. DOI: https://doi.org/10.1002/jsfa.2288

31. House J. D., Nyachoti C. M., Abramson D. Deoxynivalenol removal from barley intended as swine feed through the use of an abrasive pearling procedure. Journal of Agricultural and Food Chemistry. 2003;51(17):5172-5175. DOI: https://doi.org/10.1021/jf034244p

32. Cheli F., Battaglia D., Gallo R., Dell’Orto V. EU legislation on cereal safety: an update with a focus on mycotoxins. Food Control. 2014;37:315-325. DOI: https://doi.org/10.1016/j.foodcont.2013.09.059

33. Rios G., Zakhia-Rozis N., Chaurand M., Richard-Forget F., Samson M. F., Abecassis J., Lullien-Pellerin V. Impact of durum wheat milling on deoxynivalenol distribution in the outcoming fractions. Food Additives & Contaminants: Part A. 2009;26(4):487-495. DOI: https://doi.org/10.1080/02652030802382717

34. Tibola C. S., Fernandes J. M. C., Guarienti E. M., Nicolau M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control. 2015;53:91-95. DOI: https://doi.org/10.1016/j.foodcont.2015.01.012

35. Kabak B. The fate of mycotoxins during thermal food processing. Journal of the Science of Food and Agriculture. 2009;89(4):549-554. DOI: https://doi.org/10.1002/jsfa.3491

36. Yumbe-Guevara B. E., Imoto T., Yoshizawa T. Effects of heating procedures on deoxynivalenol, nivalenol and zearalenone levels in naturally contaminated barley and wheat. Food Additives & Contaminants. 2003;20(12):1132-1140. DOI: https://doi.org/10.1080/02652030310001620432

37. Pronyk C., Cenkowski S., Abramson D. Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels. Food Control. 2006;17(10):789-796. DOI: https://doi.org/10.1016/j.foodcont.2005.05.004

38. Liu Y., Li M., Bian K., Guan E., Liu Y., Lu Y. Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins. 2019;11(7):414. DOI: https://doi.org/10.3390/toxins11070414

39. Castells M., Marín S., Sanchis V., Ramos A. J. Fate of mycotoxins in cereals during extrusion cooking: a review. Food Additives & Contaminants. 2005;22(2):150-157. DOI: https://doi.org/10.1080/02652030500037969

40. Bullerman L. B., Bianchini A. Stability of mycotoxins during food processing. International Journal of Food Microbiology. 2007;119(1-2):140-146. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.07.035

41. Castells M., Marín S., Sanchis V., Ramos A. J. Reduction of aflatoxins by extrusion-cooking of rice meal. Journal of Food Science. 2006;71(7):369-377. DOI: https://doi.org/10.1111/j.1750-3841.2006.00122.x

42. Singh S., Gamlath S., Wakeling L. Nutritional aspects of food extrusion: a review. International Journal of Food Science & Technology. 2007;42(8):916-929. DOI: https://doi.org/10.1111/j.1365-2621.2006.01309.x

43. Elias-Orozco R., Castellanos-Nava A., Gaytan-Martinez M. Figueroa-Cardenas J. D., Loarca-Pina G. Comparison of nixtamalization and extrusion processes for a reduction in aflatoxin content. Food Additives & Contaminants. 2002;19(9):878-885. DOI: https://doi.org/10.1080/02652030210145054

44. Cazzaniga D., Basilico J. C., Gonzalez R. J., Torres R. L., de Greef D. M. Mycotoxins inactivation by extrusion cooking of corn flour. Letters in Applied Microbiology. 2001;33(2):144-147. DOI: https://doi.org/10.1046/j.1472-765x.2001.00968.x

45. Castells M., Pardo E., Ramos A. J., Sanchis V., Marin S. Reduction of ochratoxin A in extruded barley meal. Journal of Food Protection. 2006;69(5):1139-1143. DOI: https://doi.org/10.4315/0362-028X-69.5.1139

46. Pleadin J., Kudumija N., Šubarić D., Lolić M., Škrivanko M., Tkalec V. J., Kiš M., Aladić K., Vulić A., Babić J. The effect of thermal processing on the reduction of deoxynivalenol and zearalenone cereal content. Croatian Journal of Food Science and Technology. 2019;11(1):44-51. DOI: https://doi.org/10.17508/cjfst.2019.11.1.06

47. Schaich K. M. Free radical generation during extrusion: a critical contributor to texturization. ACS Symposium Series. 2002;807:35-48. DOI: https://doi.org/10.1021/bk-2002-0807.ch003

48. Herzallah S., Alshawabkeh K., Al Fataftah A. Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. Journal of Applied Poultry Research. 2008;17(4):515-521. DOI: https://doi.org/10.3382/japr.2007-00107

49. Directive 1999/2/EC of The European Parliament and of the Council: on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. 1999;16-22. URL: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0002

50. Directive 1999/3/EC of The European Parliament and of the Council: on the establishment of a Community list of foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. 1999;16-22. URL: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0003

51. Ghanem I., Orfi M., Shamma M. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Brazilian Journal of Microbiology. 2008;39(4):787-791. DOI: https://doi.org/10.1590/s1517-83822008000400035

52. He J., Zhou T., Young J. C., Boland G. J., Scott P. M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends in Food Science & Technology. 2010;21(2):67-76. DOI: https://doi.org/10.1016/j.tifs.2009.08.002

53. O’Neill K., Damoglou A. P., Patterson M. F. The stability of deoxynivalenol and 3-acetyl deoxynivalenol to gamma irradiation. Food Additives & Contaminants. 1993;10(2):209-215. DOI: https://doi.org/10.1080/02652039309374143

54. Stepanik T., Kost D., Nowicki T., Gaba D. Effects of electron beam irradiation on deoxynivalenol levels in distillers dried grain and solubles and in production intermediates. Food Additives & Contaminants 2007;24(9):1001-1006. DOI: https://doi.org/10.1080/02652030701329629

55. Calado T., Venancio A., Abrunhosa L. Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety. 2014;13(5):1049-1061. DOI: https://doi.org/10.1111/1541-4337.12095

56. Pankaj S. K., Shi H., Keener K. M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology. 2018;71:73-83. DOI: https://doi.org/10.1016/j.tifs.2017.11.007

57. Mehrez A., Maatouk I., Romero-González R., Amara A. B., Kraiem M., Frenich A. G., Landoulsi A. Assessment of ochratoxin A stability following gamma irradiation: experimental approaches for feed detoxification perspectives. World Mycotoxin Journal. 2016;9(2):289-298. DOI: https://doi.org/10.3920/WMJ2013.1652

58. Calado T., Fernández-Cruz M. L., Verde S. C., Venâncio A., Abrunhosa L. Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food chemistry. 2018;240:463-471. DOI: https://doi.org/10.1016/j.foodchem.2017.07.136

59. Mamedov Kh. F. Fotoliticheskaya i radioliticheskaya detoksikatsiya i sterilizatsiya kombikormov, zarazhennye kishechnymi palochkami i gribkami Aspergillus. [Photolytic and radio lytic detoxication and sterilization of the mixed fodders, infectedwith escherichia coli and fungi aspergillus]. Uchenye zapiski Krymskogo federal'nogo universiteta imeni V. I. Vernadskogo. Biologiya. Khimiya = Scientific Notes of Taurida V. VernadskyNational University. Series: Biology, chemistry. 2011;24(3):138-142. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=25383259

60. Mamedov Kh. F. Radioliticheskie protsessy vo vlazhnykh zernakh kukuruzy, pshenitsy i yachmenya. [Radiolytic processes in damp corn, wheat and barley grains]. Uchenye zapiski Krymskogo federal'nogo universiteta imeni V. I. Vernadskogo. Biologiya. Khimiya = Scientific Notes of Taurida V. VernadskyNational University. Series: Biology, chemistry. 2013;26(2):226-238. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=25005403

61. Pillai S. D., Shayanfar S. Electron beam technology and other irradiation technology applications in the food industry. In: Applications of Radiation Chemistry in the Fields of Industry, Biotechnology and Environment. Springer. 2017;375:249-268. DOI: https://doi.org/10.1007/978-3-319-54145-7_9

62. Khaneghah A. M., Moosavi M. H., Oliveira C. A., Vanin F., Sant'Ana A. S. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food and Chemical Toxicology. 2020;143:111557. DOI: https://doi.org/10.1016/j.fct.2020.111557

63. Luo X., Qi L., Liu Y., Wang R., Yang D., Li K., Wang L., Li Y., Zhang Y., Chen Z. Effects of electron beam irradiation on zearalenone and ochratoxin A in naturally contaminated corn and corn quality parameters. Toxins. 2017;9(3):84. DOI: https://doi.org/10.3390/toxins9030084

64. Shanakhat H., Sorrentino A., Raiola A., Romano A., Masi P., Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. Journal of the Science of Food and Agriculture. 2018;98(11):4003-4013. DOI: https://doi.org/10.1002/jsfa.8933

65. Atalla M. M., Hassanein N. M., El-Beih A. A., Youssef Y. A. Effect of fluorescent and UV light on mycotoxin production under different relative humidities in wheat grains. ACTA Pharmaceutica Sciencia. 2004;46(3):205-222. URL: http://www.actapharmsci.com/abstract.php?id=40

66. Jubeen F., Bhatti I. A., Khan M. Z., Hassan Z. U., Shahid M. Effect of UVC irradiation on aflatoxins in ground nut (Arachis hypogea) and tree nuts (Juglans regia, Prunus duclus and Pistachio vera). Journal of the Chemical Society of Pakistan. 2012;34(6):1366-1374. URL: https://jcsp.org.pk/ArticleUpload/4443-20822-1-CE.pdf

67. García-Cela E., Marin S., Sanchis V., Crespo-Sempere A., Ramos A. J. Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biology. 2015;119(1):67-78. DOI: https://doi.org/10.1016/j.funbio.2014.11.004

68. Vearasilp S., Thobunluepop P., Thanapornpoonpong S., Pawelzik E., von Hörsten D. Radio frequency heating on lipid peroxidation, decreasing oxidative stress and aflatoxin B1 reduction in Perilla frutescens L. highland oil seed. Agriculture and Agricultural Science Procedia. 2015;5:177-183. DOI: https://doi.org/10.1016/j.aaspro.2015.08.027

69. Numanoglu E., Gökmen V., Uygun U., Koksel H. Thermal degradation of deoxynivalenol during maize bread baking. Food Additives & Contaminants: Part A. 2012;29(3):423-430. DOI: https://doi.org/10.1080/19440049.2011.644812

70. Yusupova G. G. Vliyanie SVCh-energii na mikroskopicheskie griby i mikotoksiny. [Influence of microwave energy on microscopic fungi and mycotoxins]. Vestnik KrasGAU = The Bulletin of KrasGAU. 2003;3:236-238. (In Russ.). URL: https://elibrary.ru/item.asp?id=41543548

71. Tolmacheva T. A. Aflatoksiny, ikh vliyanie na prodovol'stvennoe syr'e i metody obezzarazhivaniya. [Aflatoxins and their impact on food raw materials and disinfection methods]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii = Bulletin of South Ural State University, Series «Food and Biotechnology». 2013;1(2):40-44. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=20936071

72. Soboleva O. M., Kolosova M. M., Filipovich L. A. Elektrofizicheskiy sposob snizheniya kolichestva mikotoksinov v kontsentrirovannykh kormakh. [Electrophysical method of reducing the amount of mycotoxins in concentrated feed]. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AICis. 2019;33(4):64-66. (In Russ.). DOI: https://doi.org/10.24411/0235-2451-2019-10416

73. Hojnik N., Cvelbar U., Tavčar-Kalcher G., Walsh J. L., Križaj I. Mycotoxin decontamination of food: cold atmospheric pressure plasma versus «classic» decontamination. Toxins. 2017;9(5):151. DOI: https://doi.org/10.3390/toxins9050151

74. Annor G. A. Cold plasma effects on the nutritional, textural and sensory characteristics of fruits and vegetables, meat, and dairy products. Effect of Emerging Processing Methods on the Food Quality. Springer, Cham. 2019;163-171. DOI: https://doi.org/10.1007/978-3-030-18191-8_7

75. Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-based degradation of mycotoxins produced by Fusarium Aspergillus and Alternaria species. Toxins. 2017;9(3):97. DOI: https://doi.org/10.3390/toxins9030097

76. Ouf S. A., Basher A. H., Mohamed A. A. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture. 2015;95(15):3204-3210. DOI: https://doi.org/10.1002/jsfa.7060

77. Devi Y., Thirumdas R., Sarangapani C., Deshmukh R. R., Annapure U. S. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187-191. DOI: https://doi.org/10.1016/j.foodcont.2017.02.019

78. Wang X., Wang S., Yan Y., Wang W., Zhang L., Zong W. The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control. 2020;117:107333. DOI: https://doi.org/10.1016/j.foodcont.2020.107333


Review

For citations:


Braginets S.V., Bakhchevnikov O.N. Physical methods of mycotoxin content reduction in feeds and application of them in the compound feed industry (review). Agricultural Science Euro-North-East. 2021;22(1):32-46. (In Russ.) https://doi.org/10.30766/2072-9081.2021.22.1.32-46

Views: 705


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)