Preview

Agricultural Science Euro-North-East

Advanced search

Modification of carbohydrates of food raw materials in the process of thermoplastic extrusion (review)

https://doi.org/10.30766/2072-9081.2021.22.6.795-803

Abstract

Extrusion can be considered not only as an effective technology for processing agricultural raw materials into feed and food products, but also as a thermo-mechanical method for modification of the chemical properties of biopolymers. Carbohydrates are the most represented class of organic compounds in raw materials processed by the agro-industrial complex. The assessment of the influence of the processing factor on the final physicochemical and technological properties of various types of carbohydrates included in the chemical composition of raw materials or used as mono-ingredients is an actual task for the food industry. The review considers the issues of extrusion modification of starch in terms of the difference in the properties of amylose and amylopectin as well as the presence of lipids and organic acids in the reaction system. Processes of macromolecular degradation, gelatinization, esterification and the formation of new chemical bonds in dependence on the conditions of extrusion and the composition of mixtures are discussed. The results of studies of the influence of extrusion cooking on the changes in the physicochemical properties of non-starchy polysaccharides, cellulose, araboxylans, inulin, pectin, chitosan, and gums of various origins are presented. It has been shown that extrusion and varying of its operating regimes can significantly affect the nutritional value of extrudates including changing the glycemic index, inactivating antinutritional factors, or increasing their content in extrudates.

About the Authors

A. Yu. Sharikov
All-Russian Scientific Research Institute of Food Biotechnology – a branch of Federal Research Center of Nutrition, Biotechnology and Food Safety
Russian Federation

Anton Yu. Sharikov, PhD in Engineering, Head of the Department, Department of food production equipment and membrane technologies

Samokatnaya Str., 4B, Moscow, 111033



M. V. Amelyakina
All-Russian Scientific Research Institute of Food Biotechnology – a branch of Federal Research Center of Nutrition, Biotechnology and Food Safety
Russian Federation

Maria V. Amelyakina, PhD in Engineering, researcher, Department of food production equipment and membrane technologies

Samokatnaya Str., 4B, Moscow, 111033



References

1. Gomez M. H., Aguilera J. M. A physicochemical model for extrusion of corn starch. Journal of Food Science. 1984;49(1):40-43. DOI: https://doi.org/10.1111/j.1365-2621.1984.tb13664.x

2. Obuchowski W., Chalcarz A., Paschke H. The effect of raw material composition on a soluble substances content as well as the direction and extend of changes in saccharides during extrusion process. Electronic Journal of Polish Agricultural Universities. Series Food Science and Technology. 2007;10(1):17. URL: http://www.ejpau.media.pl/volume10/issue1/art-17.html

3. Colonna P., Tayeb J., Mercier C. Extrusion cooking of starch and starchy products. In Extrusion Cooking, 2TH edition. USA. American Association of Cereal Chemists, 1998. 472 p. URL: https://www.amazon.com/Extrusion-Cooking-C-Mercier/dp/0913250678

4. Jackson D. S., Gomez M. H., Waniska R. D., Rooney L. W. Effects of single-screw extrusion cooking on starch as measured by aqueous high-performance size-exclusion chromatography. Cereal chemistry. 1990;67(6):529-532. URL: https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_529.pdf

5. Butrim S. M., Litvyak V. V., Moskva V. V. A study of physicochemical properties of extruded starches of varied biological origin. Russian Journal of Applied Chemistry. 2009;82(7):1195-1199. DOI: https://doi.org/10.1134/S1070427209070076

6. Linko P., Colonna P., Mercier C. High temperature, short time extrusion cooking. Advances in Cereal Science and Technology. 1981;4:145-235.

7. Cheftel J. C. Nutritional effects of extrusion cooking. Food Chemistry. 1986;20(4):263-283. DOI: https://doi.org/10.1016/0308-8146(86)90096-8

8. Liu W-C., Halley P. J., Gilbert R. G. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules. 2010;43(6):2855-2864. DOI: https://doi.org/10.1021/ma100067x

9. Tang J., Ding X.-L. Relationship between functional properties and macromolecular modifications of extruded corn starch. Cereal Chemistry.1994;71(4):364-369. URL: https://www.cerealsgrains.org/publications/cc/backissues/1994/Documents/71_364.pdf

10. Thuwall M., Boldizar А., Rigdahl М. Extrusion processing of high amylose potato starch materials. Carbohydrate Polymers. 2006;65(4):441-446. DOI: https://doi.org/10.1016/j.carbpol.2006.01.033

11. Shrestha A. K., Ng C. S., Lopez-Rubio А., Blazek J., Gilbert E. P., Gidley M. J. Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydrate Polymers. 2010;80(3):699-710. DOI: https://doi.org/10.1016/j.carbpol.2009.12.001

12. Cervantes-Ramírez J. E., Cabrera-Ramirez A. H., Morales-Sánchez E., Rodriguez-García M. E., ReyesVega М. L., Ramírez-Jiménezd A. K., Contreras-Jiménez B. L., Gaytán-Martínez М. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydrate Polymers. 2020;246:116555. DOI: https://doi.org/10.1016/j.carbpol.2020.116555

13. Cabrera-Ramirez A. H., Cervantes-Ramirez E., Morales-Sanchez E., Rodriguez-Garcia M. E., ReyesVega M. de la L., Gaytan-Martinez M. Effect of Extrusion on the Crystalline Structure of Starch during RS5 Formation. Polysaccharides 2021;2(1):187-201. DOI: https://doi.org/10.3390/polysaccharides2010013

14. Burey P., Bhandari B. R., Rutgers R. P. G., Halley P. J., Torley P. J. Confectionery Gels: A Review on Formulation, Rheological and Structural Aspects. International Journal of Food Properties. 2009;12(1):176-210. DOI: https://doi.org/10.1080/10942910802223404

15. Beleia A., Miller R. A., Hoseney R. C. Starch Gelatinization in Sugar Solutions. Starch–Starke. 1996;48(7-8):259-262. DOI: https://doi.org/10.1002/star.19960480705

16. Matthey F. P., Hanna M. A. Physical and functional properties of twin-screw extruded whey protein concentrate-corn starch blends. Lebensmittel Wissenschaft und Technologie. 1997;30(4):359-366. DOI: https://doi.org/10.1006/fstl.1996.0189

17. Allen K., Carpenter C. E., Walsh M. K. Influence of protein level and starch type on an extruson-expanded whey product. International Journal of Food Science Technology. 2007;42(8):953-960. DOI: https://doi.org/10.1111/j.1365-2621.2006.01316.x

18. Chen B., Chen Yu., Junfei L., Yuling Y., Xinchun Sh., Shaowei L., Xiaozhi T. Physical properties and chemical forces of extruded corn starch fortified with soy protein isolate. International Journal of Food Science & Technology. 2017;52(12):2604-2613. DOI: https://doi.org/10.1111/ijfs.13547

19. Ačkar Đ., Babić J., Jozinović A., Miličević B., Jokić S., Miličević R., Rajič M., Šubarić D. Starch Modification by Organic Acids and Their Derivatives: A Review. Molecules. 2015;20(10):19554-19570. DOI: https://doi.org/10.3390/molecules201019554

20. Solomina L. S., Solomin D. A. Tekhnologicheskie aspekty polucheniya i svoystva pshenichnogo krakhmalotsitrata. [Technological aspects of production and properties of wheat starch citrate]. Pishchevaya promyshlennost' = Food Industry. 2021;(4):50-54. (In Russ.) DOI: https://doi.org/10.24412/0235-2486-2021-4-0041

21. Neder-Suárez D., Amaya-Guerra C. A., Pérez-Carrillo E., Quintero-Ramos A., Mendez-Zamora G., Sánchez-Madrigal M. Á., Barba-Dávila B. A., Lardizábal-Gutiérrez D. Optimization of an Extrusion Cooking Process to Increase Formation of Resistant Starch from Corn Starch with Addition of Citric Acid. Starch-Stärke. 2020;72(3-4):1-2. DOI: https://doi.org/10.1002/star.201900150

22. Sharikov A. Yu., Stepanov V. I., Ivanov V. V. Termoplasticheskaya ekstruziya v protsessakh pishchevoy biotekhnologii. [Thermoplastic extrusion in food biotechnology processes]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):447-460. (In Russ.). DOI: https://doi.org/10.21285/2227-2925-2019-9-3-447-460

23. Brennan M. A., Derbyshire E., Tiwari B. K., Brennan C. S. Ready‐to‐eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science & Technology. 2013;48(5):893-902. DOI: https://doi.org/10.1111/ijfs.12055

24. Onwulata C. I., Thomas A. E., Cooke P. H., Phillips J. G., Carvalho C. W. P., Ascheri J. L. R., Tomasula P. M. Glycemic Potential of Extruded Barley, Cassava, Corn, and Quinoa Enriched With Whey Proteins and Cashew Pulp. International Journal of Food Properties. 2010;13(2):338-359. DOI: https://doi.org/10.1080/10942910802398487

25. Normy fiziologicheskikh potrebnostey v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya Rossiyskoy Federatsii: metodicheskie rekomendatsii. [Norms of physiological requirements in energy and nutrients in various groups of population in Russian Federation: methodological recommendations]. Moscow: Federal'nyy tsentr gigieny i epidemiologii Rospotrebnadzora, 2009. 36 p. URL: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4583

26. Qiao H., Shao H., Zheng X., Liu J., Liu J., Huang J., Zhang C., Liu Zh., Wang J., Guan W. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion. Food Chemistry. 2021;335:127522. DOI: https://doi.org/10.1016/j.foodchem.2020.127522

27. Robin F., Schuchmann H. P., Palzer S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends in Food Science & Technology. 2012;28(1):23-32. DOI: https://doi.org/10.1016/j.tifs.2012.06.008

28. Björck I., Nyman M., Asp N. G. Extrusion cooking and dietary fiber: effects on dietary fiber content and on degradation in the rat intestinal tract. Cereal Chemistry. 1984;61(2):174-179. URL: https://www.cerealsgrains.org/publications/cc/backissues/1984/Documents/Chem61_174.pdf

29. Wang W.-M., Klopfenstein C. F., Ponte J. G. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran on the baking quality of the wheat bran. Cereal Chem. 1993;70(6):707-711. URL: https://www.cerealsgrains.org/publications/cc/backissues/1993/Documents/70_707.pdf

30. Zhang Y., Li H., Li X., Gibril М. Е., Yu М. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid. Carbohydrate Polymers. 2014;99:126-131. DOI: https://doi.org/10.1016/j.carbpol.2013.07.084

31. Lin Q., Huang Y., Yu W. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment. Carbohydrate Polymers. 2020;241:116412. DOI: https://doi.org/10.1016/j.carbpol.2020.116412

32. Nessi V., Falourd X., Maigret J.-E., Cahier K., D’Orlando A., Descamps N., Gaucher V., Chevigny Ch., Lourdin D. Cellulose nanocrystals-starch nanocomposites produced by extrusion: Structure and behavior in physiological conditions. Carbohydrate Polymers. 2019;225:115123. DOI: https://doi.org/10.1016/j.carbpol.2019.115123

33. Ralet M.-C., Thibault J.-F, Della Valle G. Solubilisation of sugar-beet cell wall polysaccharides by extrusion-cooking. Lebensmittel-Wissenschaft und-Technologie. 1991;24(2):107-112. URL: https://www.researchgate.net/publication/232091823_Solubilisation_of_sugarbeet_cell_wall_polysaccharides_by_extrusion-cooking

34. Hwang J. K., Kim C. J., Kim Ch. T. Extrusion of Apple Pomace Facilitates Pectin Extraction. Journal of Food Science. 1998;63(5):841-844. DOI: https://doi.org/10.1111/j.1365-2621.1998.tb17911.x

35. Shoaib M., Shehzad A., Omar M., Rakha A., Raza H., Sharif H. R., Shakeel A., Ansari A., Niazi S. Inulin: Properties, health benefits and food applications. Carbohydrate Polymers. 2016;147:444-454. DOI: https://doi.org/10.1016/j.carbpol.2016.04.020

36. Peressini D., Foschia M., Tubaro F., Sensidoni A. Impact of soluble dietary fibre on the characteristics of extruded snacks. Food Hydrocolloids. 2015;43:73-81. DOI: https://doi.org/10.1016/j.foodhyd.2014.04.036

37. Sereno N. M., Hill S. E., Mitchell J. R. Impact of the extrusion process on xanthan gum behavior. Carbohydrate Research. 2007;342(10):1333-1342. DOI: https://doi.org/10.1016/j.carres.2007.03.023

38. Li R., Jia X., Wang Y., Li Y., Cheng Y. The effects of extrusion processing on rheological and physicochemical properties of sesbania gum. Food Hydrocolloids. 2019;90:35-40. DOI: https://doi.org/10.1016/j.foodhyd.2018.11.048

39. Chang Y. H., Cui S. W., Roberts K. T., Ng P. K. W., Wang Q. Evaluation of extrusion-modified fenugreek gum. Food Hydrocolloids. 2011;25(5):1296-1301. DOI: https://doi.org/10.1016/j.foodhyd.2010.12.003

40. Duan B., Huang Y., Lu A., Zhang L. Recent advances in chitin based materials constructed via physical methods. Progress in Polymer Science. 2018;82:1-33. DOI: https://doi.org/10.1016/j.progpolymsci.2018.04.001

41. Herrera N., Salaberria A. M., Mathew A. P., Oksman K. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Composites Part A: Applied Science and Manufacturing. 2016;83:89-97. DOI: https://doi.org/10.1016/j.compositesa.2015.05.024

42. Muzzarelli R. Chitosan-based dietary foods. Carbohydrate Polymers. 1996;29(4):309-316.

43. Kumara R., Xavier K. A. M., Lekshmi M., Balange A., Gudipati V. Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality. Carbohydrate Polymers. 2018;194:267-273. DOI: https://doi.org/10.1016/j.carbpol.2018.04.050

44. Pedrosa M. M., Guillamón E., Arribas C. Autoclaved and extruded legumes as a source of bioactive phytochemicals: a review. Foods. 2021;10(2):379. DOI: https://doi.org/10.3390/foods10020379

45. Singh S., Gamlath S., Wakeling L. Nutritional aspects of Food extrusion: A review. International Journal of Food Science & Technology. 2007;42(8):916-929. DOI: https://doi.org/10.1111/j.1365-2621.2006.01309.x

46. Day L., Swanson B. G. Functionality of Protein-Fortified Extrudates. Comprehensive Reviews in Food Science and Food Safety. 2013;12(5):546-564. DOI: https://doi.org/10.1111/1541-4337.12023


Review

For citations:


Sharikov A.Yu., Amelyakina M.V. Modification of carbohydrates of food raw materials in the process of thermoplastic extrusion (review). Agricultural Science Euro-North-East. 2021;22(6):795-803. (In Russ.) https://doi.org/10.30766/2072-9081.2021.22.6.795-803

Views: 463


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9081 (Print)
ISSN 2500-1396 (Online)